Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/178779
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHe, Yongmin-
dc.contributor.authorTang, Pengyi-
dc.contributor.authorHu, Zhili-
dc.contributor.authorHe, Qiyuan-
dc.contributor.authorZhu, Chao-
dc.contributor.authorWang, Luqing-
dc.contributor.authorZeng, Qingsheng-
dc.contributor.authorGolani, Prafful-
dc.contributor.authorGao, Guanhui-
dc.contributor.authorFu, Wei-
dc.contributor.authorHuang, Zhiqi-
dc.contributor.authorGao, Caitian-
dc.contributor.authorXia, Juan-
dc.contributor.authorWang, Xingli-
dc.contributor.authorWang, Xuewen-
dc.contributor.authorRamasse, Quentin M.-
dc.contributor.authorZhang, Ao-
dc.contributor.authorAn, Boxing-
dc.contributor.authorZhang, Yongzhe-
dc.contributor.authorMartí Sánchez, Sara-
dc.contributor.authorMorante i Lleonart, Joan Ramon-
dc.contributor.authorWang, Liang-
dc.contributor.authorTay, Beng Kang-
dc.contributor.authorYakobson, Boris I.-
dc.contributor.authorTrampert, Achim-
dc.contributor.authorZhang, Hua-
dc.contributor.authorWu, Minghong-
dc.contributor.authorWang, Qi Jie-
dc.contributor.authorArbiol i Cobos, Jordi-
dc.contributor.authorLiu, Zheng-
dc.date.accessioned2021-07-05T08:21:37Z-
dc.date.available2021-07-05T08:21:37Z-
dc.date.issued2020-01-02-
dc.identifier.issn2041-1723-
dc.identifier.urihttps://hdl.handle.net/2445/178779-
dc.description.abstractAtom-thin transition metal dichalcogenides (TMDs) have emerged as fascinating materials and key structures for electrocatalysis. So far, their edges, dopant heteroatoms and defects have been intensively explored as active sites for the hydrogen evolution reaction (HER) to split water. However, grain boundaries (GBs), a key type of defects in TMDs, have been overlooked due to their low density and large structural variations. Here, we demonstrate the synthesis of wafer-size atom-thin TMD films with an ultra-high-density of GBs, up to ~1012 cm−2. We propose a climb and drive 0D/2D interaction to explain the underlying growth mechanism. The electrocatalytic activity of the nanograin film is comprehensively examined by micro-electrochemical measurements, showing an excellent hydrogen-evolution performance (onset potential: −25 mV and Tafel slope: 54 mV dec−1), thus indicating an intrinsically high activation of the TMD GBs.-
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1038/s41467-019-13631-2-
dc.relation.ispartofNature Communications, 2020, vol. 11, num. 57-
dc.relation.urihttps://doi.org/10.1038/s41467-019-13631-2-
dc.rightscc-by (c) He, Yongmin et al., 2020-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationElectrocatàlisi-
dc.subject.classificationMaterials-
dc.subject.otherElectrocatalysis-
dc.subject.otherMaterials-
dc.titleEngineering grain boundaries at the 2D limit for the hydrogen evolution reaction-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec699857-
dc.date.updated2021-07-05T08:21:38Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid31896753-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)

Files in This Item:
File Description SizeFormat 
699857.pdf8.25 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons