Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/179159
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGonzález Cuadra, Daniel-
dc.contributor.authorTagliacozzo, Luca-
dc.contributor.authorLewenstein, Maciej-
dc.contributor.authorBermúdez, Alejandro-
dc.date.accessioned2021-07-16T13:06:56Z-
dc.date.available2021-07-16T13:06:56Z-
dc.date.issued2020-10-09-
dc.identifier.issn2160-3308-
dc.identifier.urihttp://hdl.handle.net/2445/179159-
dc.description.abstractTopologically ordered phases of matter, although stable against local perturbations, are usually restricted to relatively small regions in phase diagrams. Thus, their preparation requires a precise fine-tunning of the system's parameters, a very challenging task in most experimental setups. In this work, we investigate a model of spinless fermions interacting with dynamical Z2 gauge fields on a cross-linked ladder and show evidence of topological order throughout the full parameter space. In particular, we show how a magnetic flux is spontaneously generated through the ladder due to an Aharonov-Bohm instability, giving rise to topological order even in the absence of a plaquette term. Moreover, the latter coexists here with a symmetry-protected topological phase in the matter sector, which displays fractionalized gauge-matter edge states and intertwines with it by a flux-threading phenomenon. Finally, we unveil the robustness of these features through a gauge frustration mechanism, akin to geometric frustration in spin liquids, allowing topological order to survive to arbitrarily large quantum fluctuations. In particular, we show how, at finite chemical potential, topological solitons are created in the gauge field configuration, which bound to fermions and form Z2 deconfined quasiparticles. The simplicity of the model makes it an ideal candidate for 2D gauge theory phenomena, as well as exotic topological effects, to be investigated using cold-atom quantum simulators.-
dc.format.extent17 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Physical Society-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1103/PhysRevX.10.041007-
dc.relation.ispartofPhysical Review X, 2020, vol. 10, num. 4-
dc.relation.urihttps://doi.org/10.1103/PhysRevX.10.041007-
dc.rightscc-by (c) González Cuadra, Daniel et al., 2020-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationFísica de partícules-
dc.subject.classificationMatèria condensada-
dc.subject.otherParticle physics-
dc.subject.otherCondensed matter-
dc.titleRobust Topological Order in Fermionic Z(2) Gauge Theories: From Aharonov-Bohm Instability to Soliton-Induced Deconfinement-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec704253-
dc.date.updated2021-07-16T13:06:56Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/833801/EU//NOQIA-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/665884/EU//ICFOstepstone-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
704253.pdf2.32 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons