Please use this identifier to cite or link to this item:
Title: Epigenetic inactivation of the Sotos overgrowth syndrome gene histone methyltransferase NSD1 in human neuroblastoma and glioma
Author: Berdasco, María
Ropero, Santiago
Setién, Fernando
Fraga, Mario F.
Lapunzina, Pablo
Losson, Régine
Alaminos, Miguel
Cheung, Nai-Kong
Rahman, Nazneen
Esteller, Manel
Keywords: Malformacions
Trastorns del creixement
Human abnormalities
Growth disorders
Issue Date: 22-Dec-2009
Publisher: National Academy of Sciences
Abstract: Sotos syndrome is an autosomal dominant condition characterized by overgrowth resulting in tall stature and macrocephaly, together with an increased risk of tumorigenesis. The disease is caused by loss-of-function mutations and deletions of the nuclear receptor SET domain containing protein-1 (NSD1) gene, which encodes a histone methyltransferase involved in chromatin regulation. However, despite its causal role in Sotos syndrome and the typical accelerated growth of these patients, little is known about the putative contribution of NSD1 to human sporadic malignancies. Here, we report that NSD1 function is abrogated in human neuroblastoma and glioma cells by transcriptional silencing associated with CpG island-promoter hypermethylation. We also demonstrate that the epigenetic inactivation of NSD1 in transformed cells leads to the specifically diminished methylation of the histone lysine residues H4-K20 and H3-K36. The described phenotype is also observed in Sotos syndrome patients with NSD1 genetic disruption. Expression microarray data from NSD1-depleted cells, followed by ChIP analysis, revealed that the oncogene MEIS1 is one of the main NSD1 targets in neuroblastoma. Furthermore, we show that the restoration of NSD1 expression induces tumor suppressor-like features, such as reduced colony formation density and inhibition of cellular growth. Screening a large collection of different tumor types revealed that NSD1 CpG island hypermethylation was a common event in neuroblastomas and gliomas. Most importantly, NSD1 hypermethylation was a predictor of poor outcome in high-risk neuroblastoma. These findings highlight the importance of NSD1 epigenetic inactivation in neuroblastoma and glioma that leads to a disrupted histone methylation landscape and might have a translational value as a prognostic marker.
Note: Reproducció del document publicat a:
It is part of: Proceedings of the National Academy of Sciences of the United States of America - PNAS, 2009, vol. 106, num. 51, p. 21830-5-21835
Related resource:
ISSN: 0027-8424
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
700233.pdf1.82 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.