Por favor, use este identificador para citar o enlazar este documento: https://hdl.handle.net/2445/180174
Título: Marginality and convexity in partition function form games
Autor: Alonso-Meijide, José Mª
Álvarez-Mozos, Mikel
Fiestras-Janeiro, M. Gloria, 1962-
Jiménez-Losada, Andrés
Materia: Funcions convexes
Teoria de jocs
Optimització matemàtica
Particions (Matemàtica)
Convex functions
Game theory
Mathematical optimization
Partitions (Mathematics)
Fecha de publicación: agoo-2021
Publicado por: Springer Verlag
Resumen: In this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex.
Nota: Reproducció del document publicat a: https://doi.org/10.1007/s00186-021-00748-8
Es parte de: Mathematical Methods of Operations Research, 2021, vol. 94, p. 99-121
URI: https://hdl.handle.net/2445/180174
Recurso relacionado: https://doi.org/10.1007/s00186-021-00748-8
ISSN: 1432-2994
Aparece en las colecciones:Articles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial)

Archivos de este documento:
Archivo Descripción DimensionesFormato 
713745.pdf434.15 kBAdobe PDFMostrar/Abrir


Este documento está sujeto a una Licencia Creative Commons Creative Commons