Por favor, use este identificador para citar o enlazar este documento:
https://hdl.handle.net/2445/180174
Título: | Marginality and convexity in partition function form games |
Autor: | Alonso-Meijide, José Mª Álvarez-Mozos, Mikel Fiestras-Janeiro, M. Gloria, 1962- Jiménez-Losada, Andrés |
Materia: | Funcions convexes Teoria de jocs Optimització matemàtica Particions (Matemàtica) Convex functions Game theory Mathematical optimization Partitions (Mathematics) |
Fecha de publicación: | agoo-2021 |
Publicado por: | Springer Verlag |
Resumen: | In this paper an order on the set of embedded coalitions is studied in detail. This allows us to define new notions of superaddivity and convexity of games in partition function form which are compared to other proposals in the literature. The main results are two characterizations of convexity. The first one uses non-decreasing contributions to coalitions of increasing size and can thus be considered parallel to the classic result for cooperative games without externalities. The second one is based on the standard convexity of associated games without externalities that we define using a partition of the player set. Using the later result, we can conclude that some of the generalizations of the Shapley value to games in partition function form lie within the cores of specific classic games when the original game is convex. |
Nota: | Reproducció del document publicat a: https://doi.org/10.1007/s00186-021-00748-8 |
Es parte de: | Mathematical Methods of Operations Research, 2021, vol. 94, p. 99-121 |
URI: | https://hdl.handle.net/2445/180174 |
Recurso relacionado: | https://doi.org/10.1007/s00186-021-00748-8 |
ISSN: | 1432-2994 |
Aparece en las colecciones: | Articles publicats en revistes (Matemàtica Econòmica, Financera i Actuarial) |
Archivos de este documento:
Archivo | Descripción | Dimensiones | Formato | |
---|---|---|---|---|
713745.pdf | 434.15 kB | Adobe PDF | Mostrar/Abrir |
Este documento está sujeto a una
Licencia Creative Commons