Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/180269
Title: | Unsupervised machine learning techniques for chemical analysis in spectroscopic stellar surveys |
Author: | Dolcet Monés, Jaume |
Director/Tutor: | Anders, Friedrich |
Keywords: | Aprenentatge automàtic Estels Composició química Treballs de fi de grau Machine learning Stars Chemical composition Bachelor's theses |
Issue Date: | Feb-2021 |
Abstract: | In this work, we use the dimensionality reduction technique UMAP (Uniform Manifold Approximation and Projection) and a clustering algorithm (HDSCAN) on a large sample of stellar abundance ratios from a high-quality sample of the APOGEE DR16 survey (16000 red clump stars). We are able to reliably differentiate groups of stars corresponding with the chemical thick disk and thin disc, as well as a group corresponding to high α metal rich stars, and groups with anomalous abundances of certain elements, some of which are due to low precision on the abundances of P, Co, and Na determined by the pipeline |
Note: | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2021, Tutor: Friedrich Anders |
URI: | https://hdl.handle.net/2445/180269 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
DOLCET MONÉS JAUME_3085515_assignsubmission_file_TFG-Dolcet-Monés-Jaume.pdf | 3.83 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License