Please use this identifier to cite or link to this item:
Title: CPEB alteration and aberrant transcriptome-polyadenylation lead to a treatable SLC19A3 deficiency in Huntington's disease
Author: Picó, Sara
Parras, Alberto
Santos Galindo, María
Pose Utrilla Julia
Castro, Margarita
Fraga, Enrique
Hernández, Ivo H.
Elorza, Ainara
Anta, Héctor
Wang, Nan
Martí Sánchez, Laura
Belloc, Eulàlia
Garcia Esparcia, Patricia
Garrido, Juan J.
Ferrer, Isidro
Macías García, Daniel
Mir, Pablo
Artuch, Rafael
Pérez, Belén
Hernández, Félix
Navarro, Pilar
López Sendón, José Luis
Iglesias, Teresa
Yang, X. William
Méndez, Raúl
Lucas, José J.
Keywords: Corea de Huntington
Vitamines B
Huntington's disease
Vitamin B complex
Issue Date: 29-Sep-2021
Publisher: American Association for the Advancement of Science
Abstract: Huntington’s disease (HD) is a hereditary neurodegenerative disorder of the basal ganglia for which disease-modifying treatments are not yet available. Although gene-silencing therapies are currently being tested, further molecular mechanisms must be explored to identify druggable targets for HD. Cytoplasmic polyadenylation element binding proteins 1 to 4 (CPEB1 to CPEB4) are RNA binding proteins that repress or activate translation of CPE-containing transcripts by shortening or elongating their poly(A) tail. Here, we found increased CPEB1 and decreased CPEB4 protein in the striatum of patients and mouse models with HD. This correlated with a reprogramming of polyadenylation in 17.3% of the transcriptome, markedly affecting neurodegeneration-associated genes including PSEN1, MAPT, SNCA, LRRK2, PINK1, DJ1, SOD1, TARDBP, FUS, and HTT and suggesting a new molecular mechanism in neurodegenerative disease etiology. We found decreased protein content of top deadenylated transcripts, including striatal atrophy–linked genes not previously related to HD, such as KTN1 and the easily druggable SLC19A3 (the ThTr2 thiamine transporter). Mutations in SLC19A3 cause biotin-thiamine–responsive basal ganglia disease (BTBGD), a striatal disorder that can be treated with a combination of biotin and thiamine. Similar to patients with BTBGD, patients with HD demonstrated decreased thiamine in the cerebrospinal fluid. Furthermore, patients and mice with HD showed decreased striatal concentrations of thiamine pyrophosphate (TPP), the metabolically active form of thiamine. High-dose biotin and thiamine treatment prevented TPP deficiency in HD mice and attenuated the radiological, neuropathological, and motor HD-like phenotypes, revealing an easily implementable therapy that might benefit patients with HD.
Note: Reproducció del document publicat a:
It is part of: Science Translational Medicine, 2021, vol. 13, num. 613
Related resource:
ISSN: 1946-6242
Appears in Collections:Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))

Files in This Item:
File Description SizeFormat 
12541_6529115_scitranslmed_pico_2021.pdf2.24 MBAdobe PDFView/Open

Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.