Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/180754
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBigiani, Lorenzo-
dc.contributor.authorGasparotto, Alberto-
dc.contributor.authorMaccato, Chiara-
dc.contributor.authorSada, Cinzia-
dc.contributor.authorVerbeeck, Johan-
dc.contributor.authorAndreu Arbella, Teresa-
dc.contributor.authorMorante i Lleonart, Joan Ramon-
dc.contributor.authorBarreca, Davide-
dc.date.accessioned2021-10-21T12:06:46Z-
dc.date.available2021-10-21T12:06:46Z-
dc.date.issued2020-09-18-
dc.identifier.issn1867-3880-
dc.identifier.urihttps://hdl.handle.net/2445/180754-
dc.description.abstractThe development of catalysts with high intrinsic activity towards the oxygen evolution reaction (OER) plays a critical role in sustainable energy conversion and storage. Herein, we report on the development of efficient (photo)electrocatalysts based on functionalized MnO2 systems. Specifically, β-MnO2 nanostructures grown by plasma enhanced-chemical vapor deposition on fluorine-doped tin oxide (FTO) or Ni foams were decorated with Co3O4 or Fe2O3 nanoparticles by radio frequency sputtering. Upon functionalization, FTO-supported materials yielded a performance increase with respect to bare MnO2, with current densities at 1.65 V vs. the reversible hydrogen electrode (RHE) up to 3.0 and 3.5 mA/cm2 in the dark and under simulated sunlight, respectively. On the other hand, the use of highly porous and conductive Ni foam substrates enabled to maximize cooperative interfacial effects between catalyst components. The best performing Fe2O3/MnO2 system provided a current density of 17.9 mA/cm2 at 1.65 V vs. RHE, an overpotential as low as 390 mV, and a Tafel slope of 69 mV/decade under dark conditions, comparing favorably with IrO2 and RuO2 benchmarks. Overall, the control of β-MnO2/substrate interactions and the simultaneous surface property engineering pave the way to an efficient energy generation from abundant natural resources.-
dc.format.extent9 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherWiley-VCH-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1002/cctc.202000999-
dc.relation.ispartofChemCatChem, 2020, vol. 12, num. 23, p. 5984-5992-
dc.relation.urihttps://doi.org/10.1002/cctc.202000999-
dc.rights(c) Wiley-VCH, 2020-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationCatalitzadors-
dc.subject.classificationOxigen-
dc.subject.classificationNanopartícules-
dc.subject.otherCatalysts-
dc.subject.otherOxygen-
dc.subject.otherNanoparticles-
dc.titleDual Improvement of β‐MnO2 Oxygen Evolution Electrocatalysts via Combined Substrate Control and Surface Engineering-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec704311-
dc.date.updated2021-10-21T12:06:46Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/823717/EU//ESTEEM3-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
704311.pdf881.1 kBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.