Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/180781
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBigiani, Lorenzo-
dc.contributor.authorBarreca, Davide-
dc.contributor.authorGasparotto, Alberto-
dc.contributor.authorAndreu Arbella, Teresa-
dc.contributor.authorVerbeeck, Johan-
dc.contributor.authorSada, Cinzia-
dc.contributor.authorModin, Evgeny-
dc.contributor.authorLevedev, Oleg I.-
dc.contributor.authorMorante i Lleonart, Joan Ramon-
dc.contributor.authorMaccato, Chiara-
dc.date.accessioned2021-10-22T14:57:29Z-
dc.date.available2023-05-05T05:10:24Z-
dc.date.issued2021-05-05-
dc.identifier.issn0926-3373-
dc.identifier.urihttp://hdl.handle.net/2445/180781-
dc.description.abstractThe electrolysis of seawater, a significantly more abundant natural reservoir than freshwater, stands as a promising alternative for sustainable hydrogen production, provided that the competitive chloride electrooxidation is minimized. Herein, we propose an original material combination to selectively trigger oxygen evolution from seawater at expenses of chlorine generation. The target systems, based on MnO2 or Mn2O3 decorated with Fe2O3 or Co3O4, are fabricated by plasma enhanced-chemical vapor deposition of manganese oxides, functionalization with Fe2O3 and Co3O4 by sputtering, and annealing in air/Ar to obtain Mn(IV)/Mn(III) oxides. Among the various options, MnO2 decorated with Co3O4 yields the best performances in alkaline seawater splitting, with an outstanding Tafel slope of ≈40 mV × dec−1 and an overpotential of 450 mV, enabling to rule out chlorine evolution. These attractive performances, resulting from the synergistic contribution of catalytic and electronic effects, open the door to low-cost hydrogen generation from seawater under real-world conditions, paving the way to eventual large-scale applications.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier B.V.-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1016/j.apcatb.2020.119684-
dc.relation.ispartofApplied Catalysis B-Environmental, 2021, vol. 284, p. 119684-
dc.relation.urihttps://doi.org/10.1016/j.apcatb.2020.119684-
dc.rightscc-by-nc-nd (c) Elsevier B.V., 2021-
dc.rights.urihttps://creativecommons.org/licenses/by-nc-nd/4.0/-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationOxidació-
dc.subject.classificationÒxid de magnesi-
dc.subject.classificationAigua de mar-
dc.subject.classificationOxigen-
dc.subject.otherOxidation-
dc.subject.otherMagnesium oxide-
dc.subject.otherSeawater-
dc.subject.otherOxygen-
dc.titleSelective anodes for seawater splitting via functionalization of manganese oxides by a plasma-assisted process-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec712304-
dc.date.updated2021-10-22T14:57:29Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)

Files in This Item:
File Description SizeFormat 
712304.pdf13.41 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons