Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/180974
Full metadata record
DC FieldValueLanguage
dc.contributor.authorGómez González, Manuel-
dc.contributor.authorLatorre, Ernest-
dc.contributor.authorArroyo, Marino-
dc.contributor.authorTrepat Guixer, Xavier-
dc.date.accessioned2021-11-02T13:50:58Z-
dc.date.available2021-11-02T13:50:58Z-
dc.date.issued2020-05-28-
dc.identifier.issn2522-5820-
dc.identifier.urihttp://hdl.handle.net/2445/180974-
dc.description.abstractLiving tissues are active, multifunctional materials capable of generating, sensing, withstanding and responding to mechanical stress. These capabilities enable tissues to adopt complex shapes during development, to sustain those shapes during homeostasis and to restore them during healing and regeneration. Abnormal stress is associated with a broad range of pathological conditions, including developmental defects, inflammatory diseases, tumour growth and metastasis. A number of techniques are available to measure mechanical stress in living tissues at cellular and subcellular resolution. 2D techniques that map stress in cultured cell monolayers provide the highest resolution and accessibility, and include 2D traction force microscopy, micropillar arrays, monolayer stress microscopy and monolayer stretching between flexible cantilevers. Mapping stresses in tissues cultured in 3D can be achieved using 3D traction force microscopy and the microbulge test. Techniques for measuring stress in vivo include servo-null methods for measuring luminal pressure, deformable inclusions, Förster resonance energy transfer tension sensors, laser ablation and computational methods for force inference. Although these techniques are far from becoming everyday tools in biomedical laboratories, their rapid development is fostering key advances in our understanding of the role of mechanics in morphogenesis, homeostasis and disease.-
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Nature-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1038/s42254-020-0184-6-
dc.relation.ispartofNature Reviews Physics, 2020, vol. 2, p. 300-317-
dc.relation.urihttps://doi.org/10.1038/s42254-020-0184-6-
dc.rights(c) Springer Nature, 2021-
dc.sourceArticles publicats en revistes (Biomedicina)-
dc.subject.classificationMecànica dels medis continus-
dc.subject.classificationTeixits (Histologia)-
dc.subject.classificationCiències de la salut-
dc.subject.otherContinuum mechanics-
dc.subject.otherTissues-
dc.subject.otherMedical sciences-
dc.titleMeasuring mechanical stress in living tissues-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec704283-
dc.date.updated2021-11-02T13:50:58Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/797621/EU//MECHANOIDS-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Biomedicina)
Publicacions de projectes de recerca finançats per la UE
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
704283.pdf1.58 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.