Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/182016
Full metadata record
DC FieldValueLanguage
dc.contributor.authorPérez González, Carlos-
dc.contributor.authorCeada, Gerardo-
dc.contributor.authorGreco, Francesco-
dc.contributor.authorMatejčić, Marija-
dc.contributor.authorBatlle, Eduard-
dc.contributor.authorGómez González, Manuel-
dc.contributor.authorCastro, Natalia-
dc.contributor.authorMenendez, Anghara-
dc.contributor.authorKale, Sohan-
dc.contributor.authorKrndija, Denis-
dc.contributor.authorClark, Andrew G.-
dc.contributor.authorGannavarapu, Venkata Ram-
dc.contributor.authorÁlvarez Varela, Adrián-
dc.contributor.authorRoca-Cusachs Soulere, Pere-
dc.contributor.authorVignjevic, Danijela Matic-
dc.contributor.authorArroyo, Marino-
dc.contributor.authorTrepat Guixer, Xavier-
dc.date.accessioned2021-12-23T17:18:53Z-
dc.date.available2021-12-23T17:18:53Z-
dc.date.issued2021-06-21-
dc.identifier.issn1465-7392-
dc.identifier.urihttps://hdl.handle.net/2445/182016-
dc.description.abstractIntestinal organoids capture essential features of the intestinal epithelium such as crypt folding, cellular compartmentalization and collective movements. Each of these processes and their coordination require patterned forces that are at present unknown. Here we map three-dimensional cellular forces in mouse intestinal organoids grown on soft hydrogels. We show that these organoids exhibit a non-monotonic stress distribution that defines mechanical and functional compartments. The stem cell compartment pushes the extracellular matrix and folds through apical constriction, whereas the transit amplifying zone pulls the extracellular matrix and elongates through basal constriction. The size of the stem cell compartment depends on the extracellular-matrix stiffness and endogenous cellular forces. Computational modelling reveals that crypt shape and force distribution rely on cell surface tensions following cortical actomyosin density. Finally, cells are pulled out of the crypt along a gradient of increasing tension. Our study unveils how patterned forces enable compartmentalization, folding and collective migration in the intestinal epithelium.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherNature Publishing Group-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1038/s41556-021-00699-6-
dc.relation.ispartofNature Cell Biology, 2021, vol. 23, num. 7, p. 745-757-
dc.relation.urihttps://doi.org/10.1038/s41556-021-00699-6-
dc.rights(c) Pérez González, Carlos et al., 2021-
dc.sourceArticles publicats en revistes (Biomedicina)-
dc.subject.classificationIntestins-
dc.subject.classificationMigració cel·lular-
dc.subject.otherIntestines-
dc.subject.otherCell migration-
dc.titleMechanical compartmentalization of the intestinal organoid enables crypt folding and collective cell migration-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec713190-
dc.date.updated2021-12-23T17:18:53Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/797621/EU//MECHANOIDS-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6523085-
Appears in Collections:Articles publicats en revistes (Biomedicina)
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
Articles publicats en revistes (Institut de Recerca Biomèdica (IRB Barcelona))
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
713190.pdf9.99 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.