Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/182152
Full metadata record
DC FieldValueLanguage
dc.contributor.authorJúnior, Constança-
dc.contributor.authorNarciso, Maria-
dc.contributor.authorMarhuenda, Esther-
dc.contributor.authorAlmendros López, Isaac-
dc.contributor.authorFarre, Ramon-
dc.contributor.authorNavajas Navarro, Daniel-
dc.contributor.authorOtero Díaz, Jorge-
dc.contributor.authorGavara i Casas, Núria-
dc.date.accessioned2022-01-04T14:30:27Z-
dc.date.available2022-01-04T14:30:27Z-
dc.date.issued2021-11-29-
dc.identifier.issn1422-0067-
dc.identifier.urihttp://hdl.handle.net/2445/182152-
dc.description.abstractPulmonary fibrosis (PF) is a progressive disease that disrupts the mechanical homeostasis of the lung extracellular matrix (ECM). These effects are particularly relevant in the lung context, given the dynamic nature of cyclic stretch that the ECM is continuously subjected to during breathing. This work uses an in vivo model of pulmonary fibrosis to characterize the macro- and micromechanical properties of lung ECM subjected to stretch. To that aim, we have compared the micromechanical properties of fibrotic ECM in baseline and under stretch conditions, using a novel combination of Atomic Force Microscopy (AFM) and a stretchable membrane-based chip. At the macroscale, fibrotic ECM displayed strain-hardening, with a stiffness one order of magnitude higher than its healthy counterpart. Conversely, at the microscale, we found a switch in the stretch-induced mechanical behaviour of the lung ECM from strain-hardening at physiological ECM stiffnesses to strain-softening at fibrotic ECM stiffnesses. Similarly, we observed solidification of healthy ECM versus fluidization of fibrotic ECM in response to stretch. Our results suggest that the mechanical behaviour of fibrotic ECM under stretch involves a potential built-in mechanotransduction mechanism that may slow down the progression of PF by steering resident fibroblasts away from a pro-fibrotic profile.-
dc.format.extent18 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI AG-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/ijms222312928-
dc.relation.ispartofInternational Journal Of Molecular Sciences, 2021, vol. 22-
dc.relation.urihttps://doi.org/10.3390/ijms222312928-
dc.rightscc by (c) Júnior, Constança et al, 2021-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))-
dc.subject.classificationFibrosi pulmonar-
dc.subject.classificationMicroscòpia de força atòmica-
dc.subject.otherPulmonary fibrosis-
dc.subject.otherAtomic force microscopy-
dc.titleBaseline Stiffness Modulates the Non-Linear Response to Stretch of the Extracellular Matrix in Pulmonary Fibrosis-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2022-01-03T10:11:43Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6542404-
dc.identifier.pmid34884731-
Appears in Collections:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
12537_6542404_ijms-22-12928-v2.pdf1.07 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons