Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/182419
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBigiani, Lorenzo-
dc.contributor.authorGasparotto, Alberto-
dc.contributor.authorAndreu Arbella, Teresa-
dc.contributor.authorVerbeeck, Johan-
dc.contributor.authorSada, Cinzia-
dc.contributor.authorModin, Evgeny-
dc.contributor.authorLevedev, Oleg I.-
dc.contributor.authorMorante i Lleonart, Joan Ramon-
dc.contributor.authorBarreca, Davide-
dc.contributor.authorMaccato, Chiara-
dc.date.accessioned2022-01-17T13:51:14Z-
dc.date.available2022-01-17T13:51:14Z-
dc.date.issued2020-09-24-
dc.identifier.issn2366-7486-
dc.identifier.urihttp://hdl.handle.net/2445/182419-
dc.description.abstractEarth-abundant and eco-friendly manganese oxides are promising platforms for the oxygen evolution reaction (OER) in water electrolysis. Herein, a versatile and potentially scalable route to gold-decorated manganese oxide-based OER electrocatalysts is reported. In particular, MnxOy(MnO2, Mn2O3) host matrices are grown on conductive glasses by plasma assisted-chemical vapor deposition (PA-CVD), and subsequently functionalized with gold nanoparticles (guest) as OER activators by radio frequency (RF)-sputtering. The final selective obtainment of MnO2- or Mn2O3-based systems is then enabled by annealing under oxidizing or inert atmosphere, respectively. A detailed material characterization evidences the formation of high-purity Mn(x)O(y)dendritic nanostructures with an open morphology and an efficient guest dispersion into the host matrices. The tailoring of Mn(x)O(y)phase composition and host-guest interactions has a remarkable influence on OER activity yielding, for the best performing Au/Mn(2)O(3)system, a current density of approximate to 5 mA cm(-2)at 1.65 V versus the reversible hydrogen electrode (RHE) and an overpotential close to 300 mV at 1 mA cm(-2). Such results, comparing favorably with literature data on manganese oxide-based materials, highlight the importance of compositional control, as well as of surface and interface engineering, to develop low-cost and efficient anode nanocatalysts for water splitting applications.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherWiley-VCH-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1002/adsu.202000177-
dc.relation.ispartofAdvanced Sustainable Systems, 2020, vol. 5, num. 11-
dc.relation.urihttps://doi.org/10.1002/adsu.202000177-
dc.rights(c) Wiley-VCH, 2020-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationÒxid de magnesi-
dc.subject.classificationOxigen-
dc.subject.classificationNanoestructures-
dc.subject.otherMagnesium oxide-
dc.subject.otherOxygen-
dc.subject.otherNanostructures-
dc.titleAu-Manganese Oxide Nanostructures by a Plasma-Assisted Process as Electrocatalysts for Oxygen Evolution: A Chemico-Physical Investigation-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec706252-
dc.date.updated2022-01-17T13:51:14Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/823717/EU//ESTEEM3-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
706252.pdf1.05 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.