Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/182421
Full metadata record
DC FieldValueLanguage
dc.contributor.authorBarazorda-Ccahuana, Haruna L.-
dc.contributor.authorNedyalkova, Miroslava-
dc.contributor.authorMas i Pujadas, Francesc-
dc.contributor.authorMadurga Díez, Sergio-
dc.date.accessioned2022-01-17T14:19:17Z-
dc.date.available2022-01-17T14:19:17Z-
dc.date.issued2021-11-05-
dc.identifier.issn2073-4360-
dc.identifier.urihttp://hdl.handle.net/2445/182421-
dc.description.abstract(1) Background: Main Protease (Mpro) is an attractive therapeutic target that acts in the replication and transcription of the SARS-CoV-2 coronavirus. Mpro is rich in residues exposed to protonation/deprotonation changes which could affect its enzymatic function. This work aimed to explore the effect of the protonation/deprotonation states of Mpro at different pHs using computa- tional techniques. (2) Methods: The different distribution charges were obtained in all the evaluated pHs by the Semi-Grand Canonical Monte Carlo (SGCMC) method. A set of Molecular Dynamics (MD) simulations was performed to consider the different protonation/deprotonation during 250 ns, verifying the structural stability of Mpro at different pHs. (3) Results: The present findings demon- strate that active site residues and residues that allow Mpro dimerisation was not affected by pH changes. However, Mpro substrate-binding residues were altered at low pHs, allowing the increased pocket volume. Additionally, the results of the solvent distribution around Sγ, Hγ, Nδ1 and Hδ1 atoms of the catalytic residues Cys145 and His41 showed a low and high-water affinity at acidic pH, respectively. It which could be crucial in the catalytic mechanism of SARS-CoV-2 Mpro at low pHs. Moreover, we analysed the docking interactions of PF-00835231 from Pfizer in the preclinical phase, which shows excellent affinity with the Mpro at different pHs. (4) Conclusion: Overall, these findings indicate that SARS-CoV-2 Mpro is highly stable at acidic pH conditions, and this inhibitor could have a desirable function at this condition.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/polym13213823-
dc.relation.ispartofPolymers, 2021, vol. 13, num. 21, p. 3823-
dc.relation.urihttps://doi.org/10.3390/polym13213823-
dc.rightscc-by (c) Barazorda-Ccahuana, Haruna L. et al., 2021-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationSARS-CoV-2-
dc.subject.classificationDinàmica molecular-
dc.subject.classificationCOVID-19-
dc.subject.otherSARS-CoV-2-
dc.subject.otherMolecular dynamics-
dc.subject.otherCOVID-19-
dc.titleUnveiling the Effect of Low pH on the SARS-CoV-2 Main Protease by Molecular Dynamics Simulations-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec715659-
dc.date.updated2022-01-17T14:19:17Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/831644/EU//EOSCsecretariat.eu-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Institut de Química Teòrica i Computacional (IQTCUB))
Articles publicats en revistes (Ciència dels Materials i Química Física)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
715659.pdf16.01 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons