Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/182614
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCasalderrey Solana, Jorge-
dc.contributor.authorEcker, Christian-
dc.contributor.authorMateos, David (Mateos Solé)-
dc.contributor.authorSchee, Wilke van der, 1987--
dc.date.accessioned2022-01-24T16:22:21Z-
dc.date.available2022-01-24T16:22:21Z-
dc.date.issued2021-03-
dc.identifier.issn1126-6708-
dc.identifier.urihttp://hdl.handle.net/2445/182614-
dc.description.abstractWe use holography to study the dynamics of a strongly-coupled gauge theory in four-dimensional de Sitter space with Hubble rate H . The gauge theory is non-conformal with a characteristic mass scale M . We solve Einstein's equations numerically and determine the time evolution of homogeneous gauge theory states. If their initial energy density is high compared with H ⁴ then the early-time evolution is well described by viscous hydrodynamics with a non-zero bulk viscosity. At late times the dynamics is always far from equilibrium. The asymptotic late-time state preserves the full de Sitter symmetry group and its dual geometry is a domain-wall in AdS 5 . The approach to this state is characterised by an emergent relation of the form $$ \mathcal{P} $$ P = w ℰ that is different from the equilibrium equation of state in flat space. The constant w does not depend on the initial conditions but only on H / M and is negative if the ratio H / M is close to unity. The event and the apparent horizons of the late-time solution do not coincide with one another, reflecting its non-equilibrium nature. In between them lies an "entanglement horizon" that cannot be penetrated by extremal surfaces anchored at the boundary, which we use to compute the entanglement entropy of boundary regions. If the entangling region equals the observable universe then the extremal surface coincides with a bulk cosmological horizon that just touches the event horizon, while for larger regions the extremal surface probes behind the event horizon.-
dc.format.extent46 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherSpringer Verlag-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1007/jhep03(2021)181-
dc.relation.ispartofJournal of High Energy Physics, 2021, vol. 03, num. 181, p. 1-46-
dc.relation.urihttps://doi.org/10.1007/jhep03(2021)181-
dc.rightscc-by (c) Casalderrey Solana, Jorge et al., 2021-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Física Quàntica i Astrofísica)-
dc.subject.classificationCamps de galga (Física)-
dc.subject.classificationHolografia-
dc.subject.classificationHidrodinàmica-
dc.subject.otherGauge fields (Physics)-
dc.subject.otherHolography-
dc.subject.otherHydrodynamics-
dc.titleStrong-coupling dynamics and entanglement in de Sitter space-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec711398-
dc.date.updated2022-01-24T16:22:21Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)
Articles publicats en revistes (Institut de Ciències del Cosmos (ICCUB))

Files in This Item:
File Description SizeFormat 
711398.pdf1.64 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons