Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/182707
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.author | Freire, Ismael T. | - |
dc.contributor.author | Moulin Frier, Clement | - |
dc.contributor.author | Sanchez Fibla, Marti | - |
dc.contributor.author | Arsiwalla, Xerxes D. | - |
dc.contributor.author | Verschure, Paul F. M. J. | - |
dc.date.accessioned | 2022-01-27T11:45:21Z | - |
dc.date.available | 2022-01-27T11:45:21Z | - |
dc.date.issued | 2020-06-22 | - |
dc.identifier.issn | 1932-6203 | - |
dc.identifier.uri | https://hdl.handle.net/2445/182707 | - |
dc.description.abstract | What is the role of real-time control and learning in the formation of social conventions? To answer this question, we propose a computational model that matches human behavioral data in a social decision-making game that was analyzed both in discrete-time and continuous-time setups. Furthermore, unlike previous approaches, our model takes into account the role of sensorimotor control loops in embodied decision-making scenarios. For this purpose, we introduce the Control-based Reinforcement Learning (CRL) model. CRL is grounded in the Distributed Adaptive Control (DAC) theory of mind and brain, where low-level sensorimotor control is modulated through perceptual and behavioral learning in a layered structure. CRL follows these principles by implementing a feedback control loop handling the agent's reactive behaviors (pre-wired reflexes), along with an Adaptive Layer that uses reinforcement learning to maximize long-term reward. We test our model in a multi-agent game-theoretic task in which coordination must be achieved to find an optimal solution. We show that CRL is able to reach human-level performance on standard game-theoretic metrics such as efficiency in acquiring rewards and fairness in reward distribution. | - |
dc.format.extent | 22 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | - |
dc.publisher | Public Library of Science | - |
dc.relation.isformatof | Reproducció del document publicat a: https://doi.org/10.1371/journal.pone.0234434 | - |
dc.relation.ispartof | Plos One, 2020, vol.15, num. 6, p. e0234434 | - |
dc.relation.uri | https://doi.org/10.1371/journal.pone.0234434 | - |
dc.rights | cc by (c) Freire, Ismael T. et al., 2020 | - |
dc.rights.uri | http://creativecommons.org/licenses/by/3.0/es/ | * |
dc.source | Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC)) | - |
dc.subject.classification | Simulació per ordinador | - |
dc.subject.classification | Teoria de jocs | - |
dc.subject.classification | Conducta (Psicologia) | - |
dc.subject.classification | Human behavior | - |
dc.subject.other | Computer simulation | - |
dc.subject.other | Game theory | - |
dc.title | Modeling the formation of social conventions from embodied real-time interactions | - |
dc.type | info:eu-repo/semantics/article | - |
dc.type | info:eu-repo/semantics/publishedVersion | - |
dc.date.updated | 2022-01-25T06:21:36Z | - |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/820742/EU//HR-Recycler | - |
dc.relation.projectID | info:eu-repo/grantAgreement/EC/H2020/641321/EU//socSMCs | - |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | - |
dc.identifier.idimarina | 6287992 | - |
dc.identifier.pmid | 32569266 | - |
Appears in Collections: | Publicacions de projectes de recerca finançats per la UE Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC)) |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
12537_6287992_freire_plosone_15_6_e0234434.pdf | 1.47 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License