Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/182804
Title: | Using deep learning for fine-grained action segmentation |
Author: | Yuste Ramos, Joaquim |
Director/Tutor: | Clapés, Albert Escalera Guerrero, Sergio |
Keywords: | Aprenentatge automàtic Visió per ordinador Programari Treballs de fi de grau Xarxes neuronals convolucionals Reconeixement de formes (Informàtica) Xarxes neuronals (Informàtica) Machine learning Computer vision Computer software Convolutional neural networks Pattern recognition systems Bachelor's theses Neural networks (Computer science) |
Issue Date: | 20-Jun-2021 |
Abstract: | [en] This project focuses on video action segmentation task, which aims to temporally segment and classify fine-grained actions in untrimmed videos. The development and refinement of this process is an important yet challenging problem, which can provide great improvements in work areas such as robotics, e-Health assistive technologies, surveillance, and beyond. On the one hand, we will study the current state-of-the-art, as well as the metrics that are commonly used to evaluate an architecture on this kind of problems. On the other hand, we introduce two different attention-based modules that are capable of extracting frame-to-frame relationships, and a behaviour analysis will be performed by evaluating them over Georgia Tech Egocentric Activity (GTEA), which is an outstanding dataset. This dataset is focused on daily cooking activity videos, with fine-grained labels, and it has an egocentric point view. Eventually, we will compare the obtained results against the actual state-of-the-art scores, in order to discuss the effectiveness of each module. |
Note: | Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Albert Clapés i Sergio Escalera Guerrero |
URI: | https://hdl.handle.net/2445/182804 |
Appears in Collections: | Programari - Treballs de l'alumnat Treballs Finals de Grau (TFG) - Enginyeria Informàtica |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
codi.zip | Codi font | 222.96 MB | zip | View/Open |
tfg_joaquim_yuste_ramos.pdf | Memòria | 2.02 MB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License