Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/183436
Full metadata record
DC FieldValueLanguage
dc.contributor.authorClua Ferré, Laura-
dc.contributor.authorDe Chiara, Francesco-
dc.contributor.authorRodríguez Comas, Júlia-
dc.contributor.authorComelles Pujadas, Jordi-
dc.contributor.authorMartínez Fraiz, Elena-
dc.contributor.authorGodeau, Amelie Luise-
dc.contributor.authorGarcía Alamán, Ainhoa-
dc.contributor.authorGasa, Rosa-
dc.contributor.authorRamón Azcón, Javier-
dc.date.accessioned2022-02-23T10:56:44Z-
dc.date.available2022-02-23T10:56:44Z-
dc.date.issued2022-02-20-
dc.identifier.issn2365-709X-
dc.identifier.urihttp://hdl.handle.net/2445/183436-
dc.description.abstractType 1 Diabetes results from autoimmune response elicited against β-cell antigens. Nowadays, insulin injections remain the leading therapeutic option. However, injection treatment fails to emulate the highly dynamic insulin release that β-cells provide. 3D cell-laden microspheres have been proposed during the last years as a major platform for bioengineering insulin-secreting constructs for tissue graft implantation and a model for in vitro drug screening platforms. Current microsphere fabrication technologies have several drawbacks: the need for an oil phase containing surfactants, diameter inconsistency of the microspheres, and high time-consuming processes. These technologies have widely used alginate for its rapid gelation, high processability, and low cost. However, its low biocompatible properties do not provide effective cell attachment. This study proposes a high-throughput methodology using a 3D bioprinter that employs an ECM-like microenvironment for effective cell-laden microsphere production to overcome these limitations. Crosslinking the resulting microspheres with tannic acid prevents collagenase degradation and enhances spherical structural consistency while allowing the diffusion of nutrients and oxygen. The approach allows customization of microsphere diameter with extremely low variability. In conclusion, a novel bio-printing procedure is developed to fabricate large amounts of reproducible microspheres capable of secreting insulin in response to extracellular glucose stimuli.ca
dc.format.extent12 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherWileyca
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/admt.202101696-
dc.relation.ispartofAdvanced Materials Technologies, 2022, num. 2101696-
dc.relation.urihttps://doi.org/10.1002/admt.202101696-
dc.rightscc by-nc (c) Clua Ferré, Laura et al., 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc/3.0/es/*
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationEnginyeria biomèdica-
dc.subject.classificationDiabetis-
dc.subject.classificationMaterials biomèdics-
dc.subject.otherBiomedical engineering-
dc.subject.otherDiabetes-
dc.subject.otherBiomedical materials-
dc.titleCollagen-Tannic Acid Spheroids for β-Cell Encapsulation Fabricated Using a 3D Bioprinterca
dc.typeinfo:eu-repo/semantics/articleca
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/714317/EU//DAMOC-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Articles publicats en revistes (IDIBAPS: Institut d'investigacions Biomèdiques August Pi i Sunyer)
Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
AdvMatTec_2022_CluaRamon_CollagenTannic.pdf3.27 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons