Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/183542
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHennige, S.J.-
dc.contributor.authorLarsson, A.I.-
dc.contributor.authorOrejas, C.-
dc.contributor.authorGori, Andrea-
dc.contributor.authorDe Clippele, L.H.-
dc.contributor.authorLee, Y.C.-
dc.contributor.authorJimeno, G.-
dc.contributor.authorGeorgoulas, K.-
dc.contributor.authorKamenos, N.A.-
dc.contributor.authorRoberts, J.M.-
dc.date.accessioned2022-02-25T18:19:26Z-
dc.date.available2022-02-25T18:19:26Z-
dc.date.issued2021-09-15-
dc.identifier.issn0962-8452-
dc.identifier.urihttps://hdl.handle.net/2445/183542-
dc.description.abstractThe occurrence and proliferation of reef-forming corals is of vast importance in terms of the biodiversity they support and the ecosystem services they provide. The complex three-dimensional structures engineered by corals are comprised of both live and dead coral, and the function, growth and stability of these sys- tems will depend on the ratio of both. To model how the ratio of live : dead coral may change, the 'Goldilocks Principle' can be used, where organisms will only flourish if conditions are 'just right'. With data from particle imaging velocimetry and numerical smooth particle hydrodynamic modelling with two simple rules, we demonstrate how this principle can be applied to a model reef system, and how corals are effectively optimizing their own local flow requirements through habitat engineering. Building on advances here, these approaches can be used in conjunction with numerical modelling to investigate the growth and mortality of biodiversity supporting framework in present-day and future coral reef structures.-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherThe Royal Society-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1098/rspb.2021.1260-
dc.relation.ispartofProceedings of The Royal Society B: Biological Sciences, 2021, vol. 288, num. 1956, p. 591292-
dc.relation.urihttps://doi.org/10.1098/rspb.2021.1260-
dc.rights(c) Hennige, S.J. et al., 2021-
dc.sourceArticles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)-
dc.subject.classificationHidrodinàmica-
dc.subject.classificationCoralls-
dc.subject.classificationAntozous-
dc.subject.otherHydrodynamics-
dc.subject.otherCorals-
dc.subject.otherAnthozoa-
dc.titleUsing the Goldilocks Principle to model coral ecosystem engineering-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec719666-
dc.date.updated2022-02-25T18:19:27Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/818123/EU//iAtlantic-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/678760/EU//ATLAS-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Biologia Evolutiva, Ecologia i Ciències Ambientals)
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
719666.pdf1.39 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.