Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/183587
Full metadata record
DC FieldValueLanguage
dc.contributor.authorHooghvorst, Jean Joseph-
dc.contributor.authorNikolinakou, Maria A.-
dc.contributor.authorHarrold, Toby W. D.-
dc.contributor.authorFernández, Òscar-
dc.contributor.authorFlemings, Peter B.-
dc.contributor.authorMarcuello Pascual, Alejandro-
dc.date.accessioned2022-02-28T12:54:15Z-
dc.date.available2022-03-25T06:10:24Z-
dc.date.issued2021-03-25-
dc.identifier.issn0950-091X-
dc.identifier.urihttp://hdl.handle.net/2445/183587-
dc.description.abstractWe systematically incorporate burial history, sea floor geometry and tectonic loads from a sequential kinematic restoration model into a 2D evolutionary geomechanical model that simulates the formation of the Sandia salt diapir, Tarfaya basin, NW African Coast. We use a poro-elastoplastic description for the sediment behaviour and a viscoplastic description for the salt. Sedimentation is coupled with salt flow and regional shortening to determine the sediment porosity and strength and to capture the interaction between salt and sediments. We find that temporal and spatial variation in sedimentation rate is a key control on the kinematic evolution of the salt system. Incorporation of sedimentation rates from the kinematic restoration at a location east of Sandia leads to a final geomechanical model geometry very similar to that observed in seismic reflection data. We also find that changes in the variation of shortening rates can significantly affect the present-day stress state above salt. Overall, incorporating kinematic restoration data into evolutionary models provides insights into the key parameters that control the evolution of geologic systems. Furthermore, it enables more realistic evolutionary geomechanical models, which, in turn, provide insights into sediment stress and porosity.-
dc.format.extent60 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherJohn Wiley & Sons-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1111/bre.12547-
dc.relation.ispartofBasin Research, 2021, vol. 33, num. 3, p. 2049-2068-
dc.relation.urihttps://doi.org/10.1111/bre.12547-
dc.rights(c) European Association of Geoscientists & Engineers and International Association of Sedimentologists., 2021-
dc.sourceArticles publicats en revistes (Dinàmica de la Terra i l'Oceà)-
dc.subject.classificationMecànica de roques-
dc.subject.classificationÀfrica occidental-
dc.subject.otherRock mechanics-
dc.subject.otherWest Africa-
dc.titleGeologically constrained evolutionary geomechanical modelling of diapir and basin evolution: a case study from the Tarfaya basin, West African coast-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec711504-
dc.date.updated2022-02-28T12:54:15Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Dinàmica de la Terra i l'Oceà)

Files in This Item:
File Description SizeFormat 
711504.pdf37.49 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.