Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/184086
Title: In-vivo Measurement of Wrist Movements During the Dart-Throwing Motion Using Inertial Measurement Units
Author: Fischer, Gabriella
Wirth, Michael Alexander
Balocco, Simone
Calcagni, Maurizio
Keywords: Canell
Cinemàtica
Optoelectrònica
Wrist
Kinematics
Optoelectronics
Issue Date: 20-Aug-2021
Publisher: MDPI
Abstract: Background: This study investigates the dart-throwing motion (DTM) by comparing an inertial measurement unit-based system previously validated for basic motion tasks with an optoelectronic motion capture system. The DTM is interesting as wrist movement during many activities of daily living occur in this movement plane, but the complex movement is difficult to assess clinically. Methods: Ten healthy subjects were recorded while performing the DTM with their right wrist using inertial sensors and skin markers. Maximum range of motion obtained by the different systems and the mean absolute difference were calculated. Results: In the flexion-extension plane, both systems calculated a range of motion of 100◦ with mean absolute differences of 8◦ , while in the radial-ulnar deviation plane, a mean absolute difference of 17◦ and range of motion values of 48◦ for the optoelectronic system and 59◦ for the inertial measurement units were found. Conclusions: This study shows the challenge of comparing results of different kinematic motion capture systems for complex movements while also highlighting inertial measurement units as promising for future clinical application in dynamic and coupled wrist movements. Possible sources of error and solutions are discussed
Note: Reproducció del document publicat a: https://doi.org/10.3390/s21165623
It is part of: Sensors, 2021, vol. 21, num. 16, p. 5623
URI: http://hdl.handle.net/2445/184086
Related resource: https://doi.org/10.3390/s21165623
ISSN: 1424-8220
Appears in Collections:Articles publicats en revistes (Matemàtiques i Informàtica)

Files in This Item:
File Description SizeFormat 
041571-045346.pdf7.27 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons