Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/184164
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBiofarmàcia-
dc.contributor.authorAydin, Onur-
dc.contributor.authorPassaro, Austin P.-
dc.contributor.authorRaman, Ritu-
dc.contributor.authorSpellicy, Samantha E.-
dc.contributor.authorWeinberg, Robert P.-
dc.contributor.authorKamm, Roger D.-
dc.contributor.authorSample, Matthew-
dc.contributor.authorTruskey, George A.-
dc.contributor.authorZartman, Jeremiah-
dc.contributor.authorDar, Roy D.-
dc.contributor.authorPalacios, Sebastian-
dc.contributor.authorWang, Jason-
dc.contributor.authorTordoff, Jesse-
dc.contributor.authorMontserrat Pulido, Núria-
dc.contributor.authorBashir, Rashid-
dc.contributor.authorSaif, MTaher A.-
dc.contributor.authorWeiss, Ron-
dc.date.accessioned2022-03-18T09:56:15Z-
dc.date.available2022-03-18T09:56:15Z-
dc.date.issued2022-03-02-
dc.identifier.issn2473-2877-
dc.identifier.urihttp://hdl.handle.net/2445/184164-
dc.description.abstractRemarkable progress in bioengineering over the past two decades has enabled the formulation of fundamental design principles for a variety of medical and non-medical applications. These advancements have laid the foundation for building multicellular engineered living systems (M-CELS) from biological parts, forming functional modules integrated into living machines. These cognizant design principles for living systems encompass novel genetic circuit manipulation, self-assembly, cell–cell/matrix communication, and artificial tissues/organs enabled through systems biology, bioinformatics, computational biology, genetic engineering, and microfluidics. Here, we introduce design principles and a blueprint for forward production of robust and standardized M-CELS, which may undergo variable reiterations through the classic design-build-test-debug cycle. This Review provides practical and theoretical frameworks to forward-design, control, and optimize novel M-CELS. Potential applications include biopharmaceuticals, bioreactor factories, biofuels, environmental bioremediation, cellular computing, biohybrid digital technology, and experimental investigations into mechanisms of multicellular organisms normally hidden inside the “black box” of living cells.-
dc.format.extent29 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAIP Publishing-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1063/5.0076635-
dc.relation.ispartofApl Bioengineering., 2022, vol 6, num 1-
dc.relation.urihttps://doi.org/10.1063/5.0076635-
dc.rightscc by (c) Aydin, Onur et al, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))-
dc.subject.classificationBioenginyeria-
dc.subject.otherBioengineering-
dc.subject.otherBiopharmaceutics-
dc.titlePrinciples for the design of multicellular engineered living systems-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2022-03-18T09:23:37Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6544735-
dc.identifier.pmid35274072-
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
2022_APLBioengineering_Principles_MontserratN.pdf14.25 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons