Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/184339
Full metadata record
DC FieldValueLanguage
dc.contributor.authorCarreras Conill, Abel-
dc.contributor.authorConejeros Espíndola, Sergio-
dc.contributor.authorCamon, Agustín-
dc.contributor.authorGarcia, Alberto-
dc.contributor.authorCasan-Pastor, Nieves-
dc.contributor.authorAlemany i Cahner, Pere-
dc.contributor.authorCanadell, Enric, 1950--
dc.date.accessioned2022-03-22T18:30:37Z-
dc.date.available2022-03-22T18:30:37Z-
dc.date.issued2019-05-20-
dc.identifier.issn0020-1669-
dc.identifier.urihttp://hdl.handle.net/2445/184339-
dc.description.abstractThe electronic structure of AgCuO2, and more specifically the possible charge delocalization and its implications for the transport properties, has been the object of debate. Here the problem is faced by means of first-principles density functional theory calculations of the electron and phonon band structures as well as molecular dynamics simulations for different temperatures. It is found that both Cu and Ag exhibit noninteger oxidation states, in agreement with previous spectroscopic studies. The robust CuO2 chains impose a relatively short contact distance to the silver atoms, which are forced to partially use their dz2 orbitals to build a band. This band is partially emptied through overlap with a band of the CuO2 chain, which should be empty if copper were in a Cu3+ oxidation state. In that way, although structural correlations could roughly be consistent with an Ag+Cu3+O2 formulation, the appropriate oxidation states for the silver and copper atoms become Ag(1+δ)+ and Cu(3−δ)+, and as a consequence, the stoichiometric material should be metallic. The study of the electronic structure suggests that Ag atoms form relatively stable chains that can easily slide despite the linear coordination with oxygen atoms of the CuO2 chains. Phonon dispersion calculations and molecular dynamics simulations confirm the stability of the structure although pointing out that sliding of the silver chains is an easy motion that does not lead to substantial modifications of the electronic structure around the Fermi level and, thus, should not alter the good conductivity of the system. However, this sliding of the silver atoms from the equilibrium position explains the observed large thermal factors.-
dc.format.extent10 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherAmerican Chemical Society-
dc.relation.isformatofVersió postprint del document publicat a: https://doi.org/10.1021/acs.inorgchem.9b00662-
dc.relation.ispartofInorganic Chemistry, 2019, vol. 58, num. 10, p. 7026-7035-
dc.relation.urihttps://doi.org/10.1021/acs.inorgchem.9b00662-
dc.rights(c) American Chemical Society , 2019-
dc.sourceArticles publicats en revistes (Ciència dels Materials i Química Física)-
dc.subject.classificationFonons-
dc.subject.classificationEstructura electrònica-
dc.subject.classificationArgent-
dc.subject.otherPhonons-
dc.subject.otherElectronic structure-
dc.subject.otherSilver-
dc.titleCharge Delocalization, Oxidation States, and Silver Mobility in the Mixed Silver-Copper Oxide AgCuO2-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/acceptedVersion-
dc.identifier.idgrec694631-
dc.date.updated2022-03-22T18:30:37Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)
Articles publicats en revistes (Institut de Química Teòrica i Computacional (IQTCUB))

Files in This Item:
File Description SizeFormat 
694631.pdf1.13 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.