Please use this identifier to cite or link to this item:
Title: Minimal surfaces
Author: de Miguel Blasco, Lluís
Director/Tutor: Csató, Gyula
Keywords: Superfícies mínimes
Treballs de fi de grau
Geometria diferencial
Superfícies (Matemàtica)
Minimal surfaces
Bachelor's theses
Differential geometry
Surfaces (Mathematics)
Issue Date: 20-Jun-2021
Abstract: [en] In the present work we define the concept of Minimal Surface and prove some important results related to it. To begin with, we review some elementary definitions and results of differential geometry. Then, we study normal variations of curves and surfaces and solve some optimisation problems as examples of this techniques. Afterwards, we define Minimal Surface and prove a theorem relating Minimal Surfaces and normal variations of surfaces. The next section is dedicated to graph surfaces and in it we prove Jörgen’s Theorem and Bernstein’s Theorem. Finally, we extend the definitions introduced to a higher number of dimensions, study the cone in three and four dimensions and give a brief account of the history of Bernstein’s theorem and its generalization to higher dimensions.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Gyula Csató
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_lluis_de_miguel_blasco.pdfMemòria727.5 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons