Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCascante, Ma. Carme (Maria Carme)-
dc.contributor.authorJansat Balları́n, Judit-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Ma. Carme Cascanteca
dc.description.abstract[en] In this work, we study the construction of holomorphic functions with prescribed zeros on a domain given by the Weierstrass zeros theorem and use this result and Mittag-Leffler's theorem to interpolate a sequence of numbers by a holomorphic function. As an application of the previous topics, we study some algebraic properties of the ring $\mathcal{H}(\Omega)$ and its ideals. In particular, we prove a Bézout identity in this ring given by Wedderburn lemma. Finally, we prove Bers' theorem, which states that if the holomorphic function rings on two domains are algebraically equivalent, then the respective domains are conformally
dc.format.extent49 p.-
dc.rightscc-by-nc-nd (c) Judit Jansat Balları́n, 2021-
dc.subject.classificationTeoria geomètrica de funcionsca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationFuncions holomorfesca
dc.subject.classificationSubgrups de Sylowca
dc.subject.classificationFuncions meromorfesca
dc.subject.otherGeometric function theoryen
dc.subject.otherBachelor's theses-
dc.subject.otherHolomorphic functionsen
dc.subject.otherSylow subgroupsen
dc.subject.otherMeromorphic functionsen
dc.titleZeros, interpolació i l'anell de funcions holomorfes en una regióca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_judit_jansat_ballarin.pdfMemòria656.09 kBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons