Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/185518
Title: Corbes invariants en sistemes forçats quasi-periòdicament
Author: Moles Ferrer, Antoni
Director/Tutor: Jorba i Monte, Àngel
Keywords: Sistemes dinàmics diferenciables
Treballs de fi de grau
Sistemes dinàmics de baixa dimensió
Anàlisi funcional
Espais de Banach
Differentiable dynamical systems
Bachelor's theses
Low-dimensional dynamical systems
Functional analysis
Banach spaces
Issue Date: 17-Jun-2021
Abstract: [en] In this work, we prove the inverse function and implicit function theorems in functions between Banach spaces, firstly defining the concepts needed to prove the theorems. This allows us to study the continuity w.r.t. parameters of the invariant curves in a particular type of dynamical system. A quasi-periodically forced one-dimensional dynamical system is a system that has neither fixed points nor periodic points. The simplest invariant objects that can be found are curves. We prove that a sufficient condition for the continuation of an invariant curve w.r.t. a parameter is the attraction of this curve. Attraction condition is deduced by the negative sign of the Lyapunov exponent of the curve, which provides us with information about the transfer operator spectrum. We also study the linear behavior of the curves and the conditions needed to simplify their behavior.
Note: Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Àngel Jorba i Monte
URI: https://hdl.handle.net/2445/185518
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_moles_ferrer_antoni.pdfMemòria554.12 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons