Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/185526
Title: | Sèries de Taylor de zeros de polinomis d’exponents complexos |
Author: | Quingles i Davı́, Guillem |
Director/Tutor: | D'Andrea, Carlos, 1973- |
Keywords: | Combinatòria (Matemàtica) Treballs de fi de grau Funcions de diverses variables complexes Funcions holomorfes Combinations Bachelor's theses Functions of several complex variables Holomorphic functions |
Issue Date: | 20-Jun-2021 |
Abstract: | [en] We follow the work of DeFranco in [4] and [5] to prove a factorization formula for the Taylor series coefficients of a zero of a polynomial as a function of the polynomial’s coefficients. This result extends to more general functions which we call complex exponent polynomials and also to the sum of a complex exponent polynomial and an holomorphic function with a simple zero. To prove this formula we need lemmas about Stirling numbers, multisets and partition sets. We also show that, when applied to polynomials, the formula recovers Sturmfels results in [11]. Finally, continuing the the work of DeFranco, we see that the formula, when applied to second degree polynomials, agrees with the known radical solutions and we prove an extension of a result about derivations on commutative rings. |
Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Carlos D'Andrea |
URI: | https://hdl.handle.net/2445/185526 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_quingles_davi_guillem.pdf | Memòria | 742.41 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License