Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/185597
Full metadata record
DC FieldValueLanguage
dc.contributor.authorSimkin, Dina-
dc.contributor.authorMarshall, Kelly A.-
dc.contributor.authorVanoye, Carlos G.-
dc.contributor.authorDesai, Reshma R.-
dc.contributor.authorBustos, Bernabe I.-
dc.contributor.authorPiyevsky, Brandon N.-
dc.contributor.authorOrtega Cano, Juan Alberto-
dc.contributor.authorForrest, Marc-
dc.contributor.authorRobertson, Gabriella L.-
dc.contributor.authorPenzes, Peter-
dc.contributor.authorLaux, Linda C.-
dc.contributor.authorLubbe, Steven J.-
dc.contributor.authorMillichap, John J.-
dc.contributor.authorGeorge Jr, Alfred L.-
dc.contributor.authorKiskinis, Evangelos-
dc.date.accessioned2022-05-13T15:34:48Z-
dc.date.available2022-05-13T15:34:48Z-
dc.date.issued2021-02-05-
dc.identifier.issn2050-084X-
dc.identifier.urihttp://hdl.handle.net/2445/185597-
dc.description.abstractMutations in KCNQ2, which encodes a pore-forming K+ channel subunit responsible for neuronal M-current, cause neonatal epileptic encephalopathy, a complex disorder presenting with severe early-onset seizures and impaired neurodevelopment. The condition is exceptionally difficult to treat, partially because the effects of KCNQ2 mutations on the development and function of human neurons are unknown. Here, we used induced pluripotent stem cells (iPSCs) and gene editing to establish a disease model and measured the functional properties of differentiated excitatory neurons. We find that patient iPSC-derived neurons exhibit faster action potential repolarization, larger post-burst afterhyperpolarization and a functional enhancement of Ca2+-activated K+ channels. These properties, which can be recapitulated by chronic inhibition of M-current in control neurons, facilitate a burst-suppression firing pattern that is reminiscent of the interictal electroencephalography pattern in patients. Our findings suggest that dyshomeostatic mechanisms compound KCNQ2 loss-of-function leading to alterations in the neurodevelopmental trajectory of patient iPSC-derived neurons.-
dc.format.extent32 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publishereLife Sciences-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.7554/eLife.64434-
dc.relation.ispartofeLife, 2021-
dc.relation.urihttps://doi.org/10.7554/eLife.64434-
dc.rightscc-by (c) Simkin, Dina et al., 2021-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Patologia i Terapèutica Experimental)-
dc.subject.classificationCanals de potassi-
dc.subject.classificationNeurones-
dc.subject.classificationCèl·lules mare-
dc.subject.classificationMalalties neonatals-
dc.subject.otherPotassium channels-
dc.subject.otherNeurons-
dc.subject.otherStem cells-
dc.subject.otherNeonatal diseases-
dc.titleDyshomeostatic modulation of Ca2+-activated K+ channels in a human neuronal model of KCNQ2 encephalopathy-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec713968-
dc.date.updated2022-05-13T15:34:48Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid33544076-
Appears in Collections:Articles publicats en revistes (Patologia i Terapèutica Experimental)

Files in This Item:
File Description SizeFormat 
713968.pdf5.18 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons