Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/185783
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorFontich, Ernest, 1955--
dc.contributor.authorTúnica Rosich, Marc-
dc.date.accessioned2022-05-19T10:07:49Z-
dc.date.available2022-05-19T10:07:49Z-
dc.date.issued2021-06-
dc.identifier.urihttps://hdl.handle.net/2445/185783-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2021, Director: Ernest Fontichca
dc.description.abstract[en] Melnikov method is a method which aims to study the splitting between the stable and unstable manifold of fixed points or periodic orbits of dynamical systems when a perturbation is aplied. In this dissertation, we introduce this method besides a study of stable and unstable manifolds of saddle points.ca
dc.format.extent76 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Marc Túnica Rosich, 2021-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationEquacions diferencials ordinàriesca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationSistemes dinàmics diferenciablesca
dc.subject.classificationSistemes hamiltoniansca
dc.subject.classificationPertorbació (Matemàtica)ca
dc.subject.otherOrdinary differential equationsen
dc.subject.otherBachelor's theses-
dc.subject.otherDifferentiable dynamical systemsen
dc.subject.otherHamiltonian systemsen
dc.subject.otherPerturbation (Mathematics)en
dc.titleIntroducció al mètode de Melnikovca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_tunica_rosich_marc.pdfMemòria1.31 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons