Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/186029
Title: Unravelling Morphological and Topological Energy Contributions of Metal Nanoparticles
Author: Vega Dominguez, Lorena
Viñes Solana, Francesc
Neyman, Konstantin M.
Keywords: Nanopartícules
Metalls
Nanotecnologia
Nanoparticles
Metals
Nanotechnology
Issue Date: 22-Dec-2021
Publisher: MDPI
Abstract: Metal nanoparticles (NPs) are ubiquitous in many fields, from nanotechnology to heterogeneous catalysis, with properties differing from those of single-crystal surfaces and bulks. A key aspect is the size-dependent evolution of NP properties toward the bulk limit, including the adoption of different NP shapes, which may bias the NP stability based on the NP size. Herein, the stability of different Pdn NPs (n = 10-1504 atoms) considering a myriad of shapes is investigated by first-principles energy optimisation, leading to the determination that icosahedron shapes are the most stable up to a size of ca. 4 nm. In NPs larger than that size, truncated octahedron shapes become more stable, yet a presence of larger {001} facets than the Wulff construction is forecasted due to their increased stability, compared with (001) single-crystal surfaces, and the lower stability of {111} facets, compared with (111) single-crystal surfaces. The NP cohesive energy breakdown in terms of coordination numbers is found to be an excellent quantitative tool of the stability assessment, with mean absolute errors of solely 0.01 eV·atom−1, while a geometry breakdown allows only for a qualitative stability screening.
Note: Reproducció del document publicat a: https://doi.org/10.3390/nano12010017
It is part of: Nanomaterials, 2021, vol. 12, num. 1, p. 17
URI: http://hdl.handle.net/2445/186029
Related resource: https://doi.org/10.3390/nano12010017
ISSN: 2079-4991
Appears in Collections:Articles publicats en revistes (Ciència dels Materials i Química Física)
Articles publicats en revistes (Institut de Química Teòrica i Computacional (IQTCUB))

Files in This Item:
File Description SizeFormat 
721045.pdf2.17 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons