Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/186238
Title: Calmodulin-dependent KCNE4 dimerization controls membrane targeting.
Author: Roig, Sara R.
Solé, Laura
Cassinelli, Silvia
Colomer-Molera, Magalí
Sastre, Daniel
Serrano-Novillo, Clara
Serrano-Albarrás, Antonio
Lillo, M. Pilar
Tamkun, Michael M.
Felipe Campo, Antonio
Keywords: Malalties autoimmunitàries
Canals de potassi
Reticle endoplasmàtic
Autoimmune diseases
Potassium channels
Endoplasmic reticulum
Issue Date: 7-Jul-2021
Publisher: Nature Publishing Group
Abstract: The voltage-dependent potassium channel Kv1.3 participates in the immune response. Kv1.3 is essential in diferent cellular functions, such as proliferation, activation and apoptosis. Because aberrant expression of Kv1.3 is linked to autoimmune diseases, fne-tuning its function is crucial for leukocyte physiology. Regulatory KCNE subunits are expressed in the immune system, and KCNE4 specifcally tightly regulates Kv1.3. KCNE4 modulates Kv1.3 currents slowing activation, accelerating inactivation and retaining the channel at the endoplasmic reticulum (ER), thereby altering its membrane localization. In addition, KCNE4 genomic variants are associated with immune pathologies. Therefore, an in-depth knowledge of KCNE4 function is extremely relevant for understanding immune system physiology. We demonstrate that KCNE4 dimerizes, which is unique among KCNE regulatory peptide family members. Furthermore, the juxtamembrane tetraleucine carboxyl-terminal domain of KCNE4 is a structural platform in which Kv1.3, Ca2+/calmodulin (CaM) and dimerizing KCNE4 compete for multiple interaction partners. CaM-dependent KCNE4 dimerization controls KCNE4 membrane targeting and modulates its interaction with Kv1.3. KCNE4, which is highly retained at the ER, contains an important ER retention motif near the tetraleucine motif. Upon escaping the ER in a CaM-dependent pattern, KCNE4 follows a COP-II-dependent forward trafcking mechanism. Therefore, CaM, an essential signaling molecule that controls the dimerization and membrane targeting of KCNE4, modulates the KCNE4-dependent regulation of Kv1.3, which in turn fne-tunes leukocyte physiology.
Note: Reproducció del document publicat a: https://doi.org/10.1038/s41598-021-93562-5
It is part of: Scientific Reports, 2021, vol. 11, num. 1, p. 14046
URI: http://hdl.handle.net/2445/186238
Related resource: https://doi.org/10.1038/s41598-021-93562-5
ISSN: 2045-2322
Appears in Collections:Articles publicats en revistes (Bioquímica i Biomedicina Molecular)

Files in This Item:
File Description SizeFormat 
715776.pdf2.15 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons