Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/186255
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Travesa i Grau, Artur | - |
dc.contributor.author | Blanco Cabanillas, Anna | - |
dc.date.accessioned | 2022-06-02T10:06:29Z | - |
dc.date.available | 2022-06-02T10:06:29Z | - |
dc.date.issued | 2022-01-22 | - |
dc.identifier.uri | https://hdl.handle.net/2445/186255 | - |
dc.description | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grau | ca |
dc.description.abstract | [en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group. | ca |
dc.format.extent | 49 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Anna Blanco Cabanillas, 2022 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Treballs Finals de Grau (TFG) - Matemàtiques | - |
dc.subject.classification | Nombres p-àdics | ca |
dc.subject.classification | Treballs de fi de grau | - |
dc.subject.classification | Camps p-àdics | ca |
dc.subject.classification | Anàlisi p-àdica | ca |
dc.subject.classification | Teoria quàntica | ca |
dc.subject.other | p-adic numbers | en |
dc.subject.other | Bachelor's theses | - |
dc.subject.other | p-adic fields | en |
dc.subject.other | p-adic analysis | en |
dc.subject.other | Quantum theory | en |
dc.title | $p$-adic groups in quantum mechanics | ca |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
tfg_blanco_cabanillas_anna.pdf | Memòria | 546.14 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License