Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/186255
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorTravesa i Grau, Artur-
dc.contributor.authorBlanco Cabanillas, Anna-
dc.date.accessioned2022-06-02T10:06:29Z-
dc.date.available2022-06-02T10:06:29Z-
dc.date.issued2022-01-22-
dc.identifier.urihttps://hdl.handle.net/2445/186255-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Artur Travesa i Grauca
dc.description.abstract[en] Number theory is being used in physics as a mathematical tool more and more. At the end of the 20th century, $p$-adic numbers made its appearance in quantum gravitational theories like string theory. This was motivated by the non-archimedian nature of space time at Planck scale. In this work we aim to formalize the basis of $p$-adic physics by exploring how to translate complex Quantum Mechanics to $p$-adic Quantum mechanics. This will be done using Weyl's formalism, which defines bounded operators and allows to relate different time-evolution pictures in quantum mechanics. This is done by the means of representation theory. We will be exploring the representation theory of $p$-adic reductive groups, specially induced, supercuspidal and projective representations. With that knowledge we will define the $p$-adic Heisenberg group that encodes the information on the $p$-adic phase space and study the Schrödinger representation. We will explain the importance of the Stone-von Neumann theorem that states uniqueness up to equivalence and we will study the Maslov indices of the group.ca
dc.format.extent49 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Anna Blanco Cabanillas, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationNombres p-àdicsca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationCamps p-àdicsca
dc.subject.classificationAnàlisi p-àdicaca
dc.subject.classificationTeoria quànticaca
dc.subject.otherp-adic numbersen
dc.subject.otherBachelor's theses-
dc.subject.otherp-adic fieldsen
dc.subject.otherp-adic analysisen
dc.subject.otherQuantum theoryen
dc.title$p$-adic groups in quantum mechanicsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_blanco_cabanillas_anna.pdfMemòria546.14 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons