Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/186489
Full metadata record
DC FieldValueLanguage
dc.contributor.authorMarte, Luis-
dc.contributor.authorBoronat, Susanna-
dc.contributor.authorBarrios, Rubén-
dc.contributor.authorBarcons Simon, Anna-
dc.contributor.authorBolognesi, Benedetta-
dc.contributor.authorCabrera, Margarita-
dc.contributor.authorAyté, José-
dc.contributor.authorHidalgo, Elena-
dc.date.accessioned2022-06-13T11:36:25Z-
dc.date.available2022-06-13T11:36:25Z-
dc.date.issued2022-01-01-
dc.identifier.issn1422-0067-
dc.identifier.urihttp://hdl.handle.net/2445/186489-
dc.description.abstractMany neurodegenerative disorders display protein aggregation as a hallmark, Huntingtin and TDP-43 aggregates being characteristic of Huntington disease and amyotrophic lateral sclerosis, respectively. However, whether these aggregates cause the diseases, are secondary by-products, or even have protective effects, is a matter of debate. Mutations in both human proteins can modulate the structure, number and type of aggregates, as well as their toxicity. To study the role of protein aggregates in cellular fitness, we have expressed in a highly tractable unicellular model different variants of Huntingtin and TDP-43. They each display specific patterns of aggregation and toxicity, even though in both cases proteins have to be very highly expressed to affect cell fitness. The aggregation properties of Huntingtin, but not of TDP-43, are affected by chaperones such as Hsp104 and the Hsp40 couple Mas5, suggesting that the TDP-43, but not Huntingtin, derivatives have intrinsic aggregation propensity. Importantly, expression of the aggregating form of Huntingtin causes a significant extension of fission yeast lifespan, probably as a consequence of kidnapping chaperones required for maintaining stress responses off. Our study demonstrates that in general these prion-like proteins do not cause toxicity under normal conditions, and in fact they can protect cells through indirect mechanisms which up-regulate cellular defense pathways. © 2022 by the authors. Licensee MDPI, Basel, Switzerland.-
dc.format.extent21 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherMDPI-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.3390/ijms23073950-
dc.relation.ispartofInternational Journal Of Molecular Sciences, 2022, vol. 23, num. 7-
dc.relation.urihttps://doi.org/10.3390/ijms23073950-
dc.rightscc by (c) Marte, Luis et al, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))-
dc.subject.classificationProteïnes-
dc.subject.classificationMalalties neurodegeneratives-
dc.subject.otherProteins-
dc.subject.otherNeurodegenerative Diseases-
dc.titleExpression of Huntingtin and TDP-43 Derivatives in Fission Yeast Can Cause Both Beneficial and Toxic Effects-
dc.typeinfo:eu-repo/semantics/article-
dc.typenfo:eu-repo/semantics/publishedVersion-
dc.date.updated2022-06-13T09:35:54Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6552486-
dc.identifier.pmid35409310-
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
2022_IJMS_Expression_BolognesiB.pdf31.25 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons