Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/186532
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorCirici, Joana-
dc.contributor.authorGuerrero Domínguez, Daniel-
dc.date.accessioned2022-06-10T08:30:19Z-
dc.date.available2022-06-10T08:30:19Z-
dc.date.issued2022-01-24-
dc.identifier.urihttps://hdl.handle.net/2445/186532-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Joana Ciricica
dc.description.abstract[en] Conformal geometry is the branch of mathematics that studies the transformations on manifolds that preserve the angles. It has a myriad of applications, both in mathematics and in physics. In this work we present an introduction to conformal geometry and describe its relation to Penrose diagrams, which are rep- resentations of spacetimes that preserve their causal structure. To this end, we start by providing the necessary tools for doing this work from semi-Riemannian geometry and conclude by giving examples of these diagrams.ca
dc.format.extent58 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Daniel Guerrero Domínguez, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationGeometria conformeca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationGeometria diferencial globalca
dc.subject.classificationRelativitat (Física)ca
dc.subject.otherConformal geometryen
dc.subject.otherBachelor's theses-
dc.subject.otherGlobal differential geometryen
dc.subject.otherRelativity (Physics)en
dc.titleIntroduction to Conformal Geometry and Penrose Diagramsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_guerrero_domínguez_daniel.pdfMemòria1.61 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons