Please use this identifier to cite or link to this item:
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorVives i Santa Eulàlia, Josep, 1963--
dc.contributor.authorParra Serret, Roger-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Josep Vives i Santa Eulàliaca
dc.description.abstract[en] The Shapley value is a solution concept used in game theory that involves fairly distributing both gains and costs to several actors working in coalition. In this article, we study its problems and we talk about possible solutions of diferent situations that there exist. We will place much emphasis in some projects like ’An analysis of the Shapley Value and its Uncertainty for the Voting Game’ done by Shaheen S. Fatima, Michael Wooldridge and Nicholas R. Jenning, and ’Polynomial calculation of the Shapley value based on sampling’ done by Javier Castro, Daniel Gómez and Juan Tejada. Furthermore, we will see another way to compute this value, based on the work mentioned above about random sampling. Finally, we will compare the last two methods that we have presented and we will see an example based on a real
dc.format.extent48 p.-
dc.rightscc-by-nc-nd (c) Roger Parra Serret, 2022-
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationJocs cooperatius (Matemàtica)ca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationMostreig (Estadística)ca
dc.subject.classificationTeoria de jocsca
dc.subject.otherCooperative games (Mathematics)en
dc.subject.otherBachelor's theses-
dc.subject.otherSampling (Statistics)en
dc.subject.otherGame theoryen
dc.titleCàlcul del valor de Shapleyca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_parra_serret_roger.pdfMemòria1.71 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons