Please use this identifier to cite or link to this item:
Title: Sub-seasonal to seasonal climate forecasting using machine learning
Author: Bech Sala, Sergi
Director/Tutor: Vitrià i Marca, Jordi
Lledó Ponsatí, Llorenç
Keywords: Aprenentatge automàtic
Previsió del temps
Treballs de fi de grau
Precipitacions (Meteorologia)
Temperatura atmosfèrica
Models matemàtics
Machine learning
Weather forecasting
Computer software
Precipitations (Meteorology)
Atmospheric temperature
Bachelor's theses
Mathematical models
Issue Date: 24-Jan-2022
Abstract: [en] The main topic of this work is the study and the application of Machine Learning (ML) techniques to improve probabilistic forecasts of two-meter temperature and total precipitation at sub-seasonal scales (i.e. several weeks ahead) for the whole globe. We analyze the performance of a number of Machine Learning methods and finally we combine the best models to obtain the optimal prediction at each latitude, longitude, and for each lead time. In addition, the results of this work have been presented to an open prize challenge launched by the World Meteorological Organization (WMO) to improve current forecasts of precipitation and temperature from state-of-the-art numerical weather and climate prediction models 3 to 6 weeks into the future using Artificial Intelligence.
Note: Treballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Jordi Vitrià i Marca i Llorenç Lledó Ponsatí
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Enginyeria Informàtica
Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
codi font.zipCodi font112.81 kBzipView/Open
tfg_bech_sala_sergi.pdfMemòria3.8 MBAdobe PDFView/Open

This item is licensed under a Creative Commons License Creative Commons