Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/187036
Full metadata record
DC FieldValueLanguage
dc.contributor.authorChuliá Soler, Helena-
dc.contributor.authorGarrón Vedia, Ignacio-
dc.contributor.authorUribe Gil, Jorge Mario-
dc.date.accessioned2022-06-28T07:26:45Z-
dc.date.available2022-06-28T07:26:45Z-
dc.date.issued2022-
dc.identifier.urihttps://hdl.handle.net/2445/187036-
dc.description.abstractWe estimate Growth-at-Risk (GaR) statistics for the US economy using daily regressors. We show that the relative importance, in terms of forecasting power, of financial and real variables is time varying. Indeed, the optimal forecasting weights of these types of variables were clearly different during the Global Financial Crisis and the recent Covid-19 crisis, which reflects the dissimilar nature of the two crises. We introduce the LASSO and the Elastic Net into the family of mixed data sampling models used to estimate GaR and show that these methods outperform past candidates explored in the literature. The role of the VXO and ADS indicators was found to be very relevant, especially in out-of-sample exercises and during crisis episodes. Overall, our results show that daily information for both real and financial variables is key for producing accurate point and tail risk nowcasts and forecasts of economic activity.ca
dc.format.extent53 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.publisherUniversitat de Barcelona. Facultat d'Economia i Empresaca
dc.relation.isformatofReproducció del document publicat a: http://www.ub.edu/irea/working_papers/2022/202208.pdf-
dc.relation.ispartofIREA – Working Papers, 2022, IR22/08-
dc.relation.ispartofseries[WP E-IR22/08]ca
dc.rightscc-by-nc-nd, (c) Chuliá Soler et al., 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceDocuments de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))-
dc.subject.classificationRisc (Economia)-
dc.subject.classificationValor (Economia)-
dc.subject.classificationAprenentatge automàtic-
dc.subject.classificationVariables aleatòries-
dc.subject.otherRisk-
dc.subject.otherValue (Economics)-
dc.subject.otherMachine learning-
dc.subject.otherRandom variables-
dc.titleDaily Growth at Risk: financial or real drivers? The answer is not always the same [WP]ca
dc.typeinfo:eu-repo/semantics/workingPaperca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Documents de treball (Institut de Recerca en Economia Aplicada Regional i Pública (IREA))

Files in This Item:
File Description SizeFormat 
IR22_008_Chulia+Garron+Uribe.pdf6.26 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons