Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/187143
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorRadeva, Petia-
dc.contributor.authorCatalán Tatjer, Albert-
dc.date.accessioned2022-06-29T06:28:20Z-
dc.date.available2022-06-29T06:28:20Z-
dc.date.issued2022-01-24-
dc.identifier.urihttps://hdl.handle.net/2445/187143-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Petia Radevaca
dc.description.abstract[en] The main topic of this work is Learning with Noisy Labels (LNL). It is the field of Machine Learning concerned with training Neural Networks with noisy datasets. In particular, we have studied DivideMix, a method for LNL in the context of Computer Vision. After an extensive research we have discovered that it is unaware of the underlying class-conditional behaviour which consequently produces class imbalances. In this work, we present two class-conditional approaches to DivideMix. With this intent, we study approximate Baye- sian Inference to quantify per-class uncertainty and leverage this extra information to improve the MixMatch step. In addition, we propose a class-aware policy that improves co-divide. Finally, improving DivideMix’s predictive accuracy by up to 0.39% in certain noise settings.ca
dc.format.extent65 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Albert Catalán Tatjer, 2022-
dc.rightscodi: MIT (c) Albert Catalán Tatjer, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.rights.urihttps://opensource.org/licenses/MIT*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationXarxes neuronals (Informàtica)ca
dc.subject.classificationAprenentatge automàticca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationVisió per ordinadorca
dc.subject.classificationProcessament digital d'imatgesca
dc.subject.otherNeural networks (Computer science)en
dc.subject.otherMachine learningen
dc.subject.otherComputer softwareen
dc.subject.otherComputer visionen
dc.subject.otherDigital image processingen
dc.subject.otherBachelor's thesesen
dc.titleA class-conditional approach to learning with noisy labelsca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Matemàtiques
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
codi.zipCodi font516.98 kBzipView/Open
tfg_catalan_tatjer_albert.pdfMemòria3.2 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons