Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/187842
Full metadata record
DC FieldValueLanguage
dc.contributor.authorErezuma, Itsasne-
dc.contributor.authorLukin, Izeia-
dc.contributor.authorPimenta Lopes, Carolina-
dc.contributor.authorVentura Pujol, Francesc-
dc.contributor.authorGarcia Garcia, Patricia-
dc.contributor.authorReyes, Ricardo-
dc.contributor.authorArnau, Rosa M.-
dc.contributor.authorDelgado, Araceli-
dc.contributor.authorTaebnia, Nayere-
dc.contributor.authorBabu Kadumudi, Firoz-
dc.contributor.authorDolatshahi Pirouz, Alireza-
dc.contributor.authorOrive, Gorka-
dc.date.accessioned2022-07-18T17:10:09Z-
dc.date.available2022-07-18T17:10:09Z-
dc.date.issued2022-06-01-
dc.identifier.urihttps://hdl.handle.net/2445/187842-
dc.description.abstractBone tissue engineering has come on the scene to overcome the difficulties of the current treatment strategies. By combining biomaterials, active agents and growth factors, cells and nanomaterials, tissue engineering makes it possible to create new structures that enhance bone regeneration. Herein, hyaluronic acid and alginate were used to create biologically active hydrogels, and montmorillonite nanoclay was used to reinforce and stabilize them. The developed scaffolds were found to be biocompatible and osteogenic with mMSCs in vitro, especially those reinforced with the nanoclay, and allowed mineralization even in the absence of differentiation media. Moreover, an in vivo investigation was performed to establish the potential of the hydrogels to mend bone and act as cell-carriers and delivery platforms for SDF-1. Scaffolds embedded with SDF-1 exhibited the highest percentages of bone regeneration as well as of angiogenesis, which confirms the suitability of the scaffolds for bone. Although there are a number of obstacles to triumph over, these bioengineered structures showed potential as future bone regeneration treatments.-
dc.format.extent11 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier BV-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.ijpharm.2022.121895-
dc.relation.ispartofInternational Journal of Pharmaceutics, 2022, vol. 623, p. 121895-
dc.relation.urihttps://doi.org/10.1016/j.ijpharm.2022.121895-
dc.rightscc by (c) Erezuma, Itsasne et al., 2022-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Ciències Fisiològiques)-
dc.subject.classificationEnginyeria de teixits-
dc.subject.classificationOssos-
dc.subject.classificationMaterials biomèdics-
dc.subject.otherBones-
dc.subject.otherBiomedical materials-
dc.subject.otherTissue engineering-
dc.titleNanoclay-reinforced HA/alginate scaffolds as cell carriers and SDF-1 delivery-platforms for bone tissue engineering-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec729814-
dc.date.updated2022-07-18T08:13:43Z-
dc.relation.projectIDinfo:eu-repo/grantAgreement/EC/H2020/951747/EU//GREENELIT-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.pmid35691524-
Appears in Collections:Articles publicats en revistes (Ciències Fisiològiques)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))
Publicacions de projectes de recerca finançats per la UE

Files in This Item:
File Description SizeFormat 
1-s2.0-S0378517322004501-main.pdf12.01 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons