Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/187843
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAndres, Xavier-
dc.contributor.authorArqué, Xavier-
dc.contributor.authorMestre, Rafael-
dc.contributor.authorCiraulo, Bernard-
dc.contributor.authorOrtega Arroyo, Jaime-
dc.contributor.authorQuidant, Romain-
dc.contributor.authorPatiño, Tania-
dc.contributor.authorSanchez Ordoñez, Samuel-
dc.date.accessioned2022-07-18T17:21:13Z-
dc.date.available2022-07-18T17:21:13Z-
dc.date.issued2020-07-27-
dc.identifier.issn2639-5274-
dc.identifier.urihttp://hdl.handle.net/2445/187843-
dc.description.abstractEnzyme-powered motors self-propel through the catalysis of in situ bioavailable fuels, which makes them excellent candidates for biomedical applications. However, fundamental issues like their motion in biological fluids and the understanding of the propulsion mechanism are critical aspects to be tackled before a future application in biomedicine. Herein, we investigated the physicochemical effects of ionic species on the self-propulsion of urease-powered micromotors. Results showed that the presence of PBS, NaOH, NaCl, and HEPES reduced self-propulsion of urease-powered micromotors pointing towards ion-dependent mechanisms of motion. We studied the 3D motion of urease micromotors using digital holographic microscopy to rule out any motor-surface interaction as the cause of motion decay when salts are present in the media. In order to protect and minimize the negative effect of ionic species on micromotors' performance, we coated the motors with methoxypolyethylene glycol amine (mPEG) showing higher speed compared to noncoated motors at intermediate ionic concentrations. These results provide new insights into the mechanism of urease-powered micromotors, study the effect of ionic media, and contribute with potential solutions to mitigate the reduction of mobility of enzyme-powered micromotors.-
dc.format.extent14 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.34133/2020/2424972-
dc.relation.ispartofResearch, 2020-
dc.relation.urihttps://doi.org/10.34133/2020/2424972-
dc.rightscc by (c) Andres, Xavier et al, 2020-
dc.rights.urihttp://creativecommons.org/licenses/by/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))-
dc.subject.classificationEnginyeria biomèdica-
dc.subject.classificationQuímica física-
dc.subject.otherBiomedical engineering-
dc.subject.otherPhysical and theoretical chemistry-
dc.titleIonic Species Affect the Self-Propulsion of Urease-Powered Micromotors-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2022-07-18T15:13:27Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6327168-
dc.identifier.pmid32803169-
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
2020_Research_Ionic_SanchezS.pdf1.53 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons