Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/187901
Title: Estimating country-specific incidence rates of rare cancers: comparative perfomance analysis of modeling approaches using European cancer registry data
Author: Salmerón, Diego
Botta, Laura
Martínez, José Miguel
Trama, Annalisa
Gatta, Gemma
Borràs Andrés, Josep Maria
Capocaccia, Ricardo
Clèries Soler, Ramon
Keywords: Càncer
Estimació d'un paràmetre
Epidemiologia
Cancer
Parameter estimation
Epidemiology
Issue Date: 2022
Publisher: Oxford University Press
Abstract: Estimating incidence of rare cancers is challenging for exceptionally rare entities and in small populations. In a previous study, investigators in the Information Network on Rare Cancers (RARECARENet) provided Bayesian estimates of expected numbers of rare cancers and 95% credible intervals for 27 European countries, using data collected by population-based cancer registries. In that study, slightly different results were found by implementing a Poisson model in integrated nested Laplace approximation/WinBUGS platforms. In this study, we assessed the performance of a Poisson modeling approach for estimating rare cancer incidence rates, oscillating around an overall European average and using small-count data in different scenarios/computational platforms. First, we compared the performance of frequentist, empirical Bayes, and Bayesian approaches for providing 95% confidence/credible intervals for the expected rates in each country. Second, we carried out an empirical study using 190 rare cancers to assess different lower/upper bounds of a uniform prior distribution for the standard deviation of the random effects. For obtaining a reliable measure of variability for country-specific incidence rates, our results suggest the suitability of using 1 as the lower bound for that prior distribution and selecting the random-effects model through an averaged indicator derived from 2 Bayesian model selection criteria: the deviance information criterion and the Watanabe-Akaike information criterion.
Note: Reproducció del document publicat a: https://doi.org/10.1093/aje/kwab262
It is part of: American Journal of Epidemiology, 2022, vol. 191, num. 3, p. 487-498
URI: https://hdl.handle.net/2445/187901
Related resource: https://doi.org/10.1093/aje/kwab262
ISSN: 0002-9262
Appears in Collections:Articles publicats en revistes (Ciències Clíniques)
Articles publicats en revistes (Institut d'lnvestigació Biomèdica de Bellvitge (IDIBELL))

Files in This Item:
File Description SizeFormat 
716056.pdf386.18 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons