Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/188641
Full metadata record
DC Field | Value | Language |
---|---|---|
dc.contributor.advisor | Marín Benito, Carla | - |
dc.contributor.author | Costa Ledesma, Vanessa | - |
dc.date.accessioned | 2022-09-02T08:14:16Z | - |
dc.date.available | 2022-09-02T08:14:16Z | - |
dc.date.issued | 2022-06 | - |
dc.identifier.uri | https://hdl.handle.net/2445/188641 | - |
dc.description | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutora: Carla Marín Benito | ca |
dc.description.abstract | Machine learning algorithms have gained traction in a variety of fields throughout the last decade. This final degree project focuses on a bank problem and on a high-energy physics problem: searching for a rare Λ0b decay. Two different machine learning methods are used: Neural Networks and Boosted Trees, implemented in three different Phython libraries: TensorFlow and Keras, PyTorch and XGBoost. Using the AUC-ROC curve, the models between the three libraries are compared, and finally, models try to predict whether the Λ0b decay happens for a given data. Results for the bank problem shows nearly the same performance for TensorFlow and PyTorch, while XGBoost seems significantly better. For the high-energy problem XGBoost seems better, followed by TensorFlow and last PyTorch. However, predictions made on new data shows similar performance for XGBoost and PyTorch. | ca |
dc.format.extent | 6 p. | - |
dc.format.mimetype | application/pdf | - |
dc.language.iso | eng | ca |
dc.rights | cc-by-nc-nd (c) Costa, 2022 | - |
dc.rights.uri | http://creativecommons.org/licenses/by-nc-nd/3.0/es/ | * |
dc.source | Treballs Finals de Grau (TFG) - Física | - |
dc.subject.classification | Aprenentatge automàtic | cat |
dc.subject.classification | Xarxes neuronals (Informàtica) | cat |
dc.subject.classification | Treballs de fi de grau | cat |
dc.subject.other | Machine learning | eng |
dc.subject.other | Neural networks (Computer science) | eng |
dc.subject.other | Bachelor's theses | eng |
dc.title | Machine Learning Applied to High Energy Physics | eng |
dc.type | info:eu-repo/semantics/bachelorThesis | ca |
dc.rights.accessRights | info:eu-repo/semantics/openAccess | ca |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
COSTA LEDESMA VANESSA_6057605_assignsubmission_file_TFG-Costa-Ledesma-Vanessa.pdf | 529.32 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License