Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/188730
Full metadata record
DC FieldValueLanguage
dc.contributor.authorAstro, Veronica-
dc.contributor.authorRamirez Calderon, Gustavo-
dc.contributor.authorPennucci, Roberta-
dc.contributor.authorCaroli, Jonatan-
dc.contributor.authorSaera Vila, Alfonso-
dc.contributor.authorCardona Londoño, Kelly-
dc.contributor.authorForastieri, Chiara-
dc.contributor.authorFiacco, Elisabetta-
dc.contributor.authorMaksoud, Fatima-
dc.contributor.authorAlowaysi, Maryam-
dc.contributor.authorSogne, Elisa-
dc.contributor.authorFalqui, Andrea-
dc.contributor.authorGonzález, Federico-
dc.contributor.authorMontserrat, Nuria-
dc.contributor.authorBattaglioli, Elena-
dc.contributor.authorMattevi, Andrea-
dc.contributor.authorAdamo, Antonio-
dc.date.accessioned2022-09-06T12:27:26Z-
dc.date.available2022-09-06T12:27:26Z-
dc.date.issued2022-07-15-
dc.identifier.issn2589-0042-
dc.identifier.urihttps://hdl.handle.net/2445/188730-
dc.description.abstractThe histone demethylase KDM1A is a multi- faceted regulator of vital developmental processes, including mesodermal and cardiac tube formation during gastrulation. However, it is unknown whether the fine-tuning of KDM1A splicing isoforms, already shown to regulate neuronal maturation, is crucial for the specification and maintenance of cell identity during cardiogenesis. Here, we discovered a temporal modulation of ubKDM1A and KDM1A+2a during human and mice fetal cardiac development and evaluated their impact on the regulation of cardiac differentiation. We revealed a severely impaired cardiac differentiation in KDM1A(-/-) hESCs that can be rescued by re-expressing ubKDM1A or catalytically impaired ubKDM1A-K661A, but not by KDM1A+2a or KDM1A+2a-K661A. Conversely, KDM1A+2a(-/-) hESCs give rise to functional cardiac cells, displaying increased beating amplitude and frequency and enhanced expression of critical cardiogenic markers. Our findings prove the existence of a divergent scaffolding role of KDM1A splice variants, independent of their enzymatic activity, during hESC differentiation into cardiac cells.-
dc.format.extent33 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.isci.2022.104665-
dc.relation.ispartofIscience, 2022, vol. 25, num.7, p. 104665-
dc.relation.urihttps://doi.org/10.1016/j.isci.2022.104665-
dc.rightscc by-nc-nd (c) Astro, Veronica et al., 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))-
dc.subject.classificationCèl·lules mare-
dc.subject.classificationRegulació genètica-
dc.subject.classificationCèl·lules-
dc.subject.otherStem cells-
dc.subject.otherGenetic regulation-
dc.subject.otherCells-
dc.titleFine-tuned KDM1A alternative splicing regulates human cardiomyogenesis through an enzymatic-independent mechanism-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.date.updated2022-09-05T13:40:58Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
dc.identifier.idimarina6564039-
dc.identifier.pmid35856020-
Appears in Collections:Articles publicats en revistes (Institut de Bioenginyeria de Catalunya (IBEC))

Files in This Item:
File Description SizeFormat 
2022_iScience_Fine_MontserratN.pdf7.91 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons