Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/188737| Title: | Grafs i superfícies de Riemann |
| Author: | Blanco Lara, Ana |
| Director/Tutor: | Naranjo del Val, Juan Carlos |
| Keywords: | Teoria de grafs Treballs de fi de grau Superfícies de Riemann Funcions de variables complexes Graph theory Bachelor's theses Riemann surfaces Functions of complex variables |
| Issue Date: | 13-Jun-2022 |
| Abstract: | [en] This memory presents basic notions and results about Riemann surfaces which are later seen applied in an analogous way in graphs. The analogy is given in divisors’ context, enunciating a version for graphs of the known Riemann-Roch Theorem. In addition, other results analogous to classical facts about Riemann surfaces theory are shown and proved, like the jacobian or the Abel-Jacobi map. Finally, the analogy with divisors is used for observing a possible application on a Chip-Firing game, a graphs’ game, making it possible to characterise the existence or non-existence of a winning strategy. |
| Note: | Treballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Juan Carlos Naranjo del Val |
| URI: | https://hdl.handle.net/2445/188737 |
| Appears in Collections: | Treballs Finals de Grau (TFG) - Matemàtiques |
Files in This Item:
| File | Description | Size | Format | |
|---|---|---|---|---|
| tfg_blanco_lara_ana.pdf | Memòria | 846.47 kB | Adobe PDF | View/Open |
This item is licensed under a
Creative Commons License
