Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/188762
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorIbañes Miguez, Marta-
dc.contributor.advisorPontes, Camila-
dc.contributor.advisorRuiz-Serra, Victoria-
dc.contributor.authorNovell Mazzara, Alice-
dc.date.accessioned2022-09-06T13:48:22Z-
dc.date.available2022-09-06T13:48:22Z-
dc.date.issued2022-06-
dc.identifier.urihttps://hdl.handle.net/2445/188762-
dc.descriptionTreballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutores: Marta Ibañes, Camila Pontes, Victoria Ruizca
dc.description.abstractAmino acids that coevolve can be indicative of functionality, so coevolution-based methods can be used to detect important amino acids in proteins, known as hotspots. Here, we apply a recently published method based on network metrics and coevolutionary information to detect functional hotspots in the SARS-CoV-2 spike protein. We found 275 potential hotspots withavailable experimental information in the literature for 4 of them, for example, position 614 (ASP), known to increment the infectivity of SARS-CoV-2 towards human host cells. In addition, a hotspot enrichment analysis was performed, as well as a study of the relative solvent accessibility of hotspot versus non-hotspot positions for the receptor binding domain. The hotspots showed less surface area available when bound to the human receptor compared to when not bound, which does not occur for non-hotspot positions, indicating that the hotspots obtained may be important for the binding of the spike protein to the receptor of the host cellca
dc.format.extent6 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightscc-by-nc-nd (c) Novell, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Física-
dc.subject.classificationSARS-CoV-2cat
dc.subject.classificationCoevoluciócat
dc.subject.classificationTreballs de fi de graucat
dc.subject.otherSARS-CoV-2eng
dc.subject.otherCoevolutioneng
dc.subject.otherBachelor's theseseng
dc.titleGraph-based coevolutionary approach on SARS-CoV-2 spike proteineng
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Física

Files in This Item:
File Description SizeFormat 
NOVELL MAZZARA ALICE_6057553_assignsubmission_file_TFG_Novell_Mazzara_Alice.pdf1.88 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons