Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/188821
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorJorba i Monte, Àngel-
dc.contributor.authorCamı́ Buzón, Javier-
dc.date.accessioned2022-09-08T07:27:36Z-
dc.date.available2022-09-08T07:27:36Z-
dc.date.issued2022-06-13-
dc.identifier.urihttp://hdl.handle.net/2445/188821-
dc.descriptionTreballs Finals de Grau de Matemàtiques, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Àngel Jorba i Monteca
dc.description.abstract[en] In this work, we study the persistence of invariant tori. Initially, we work on functional analysis in order to prove the mean value theorem and the inverse function theorem in Banach spaces, which will allow us to state and prove the implicit function theorem. Then, we apply those results to study a dynamical system which is perturbated by a quasi-periodic function in the neighborhood of an equilibrium point. During this analysis, we face the small divisors problem and we see the concept of the diophantine condition. Finally, we state and prove the Moser’s KAM theorem for twist maps.ca
dc.format.extent50 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isocatca
dc.rightscc-by-nc-nd (c) Javier Camı́ Buzón, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceTreballs Finals de Grau (TFG) - Matemàtiques-
dc.subject.classificationFluxos (Sistemes dinàmics diferenciables)ca
dc.subject.classificationTreballs de fi de grau-
dc.subject.classificationEspais de Banachca
dc.subject.classificationSistemes hamiltoniansca
dc.subject.otherFlows (Differentiable dynamical systems)en
dc.subject.otherBachelor's theses-
dc.subject.otherBanach spacesen
dc.subject.otherHamiltonian systemsen
dc.titlePersistència de solucions quasi-periòdiquesca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Treballs Finals de Grau (TFG) - Matemàtiques

Files in This Item:
File Description SizeFormat 
tfg_cami_buzon_javier.pdfMemòria662.59 kBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons