Please use this identifier to cite or link to this item: https://hdl.handle.net/2445/188851
Full metadata record
DC FieldValueLanguage
dc.contributor.advisorBalocco, Simone-
dc.contributor.authorCanales Martín, Iván-
dc.date.accessioned2022-09-09T07:15:01Z-
dc.date.available2022-09-09T07:15:01Z-
dc.date.issued2022-06-13-
dc.identifier.urihttps://hdl.handle.net/2445/188851-
dc.descriptionTreballs Finals de Grau d'Enginyeria Informàtica, Facultat de Matemàtiques, Universitat de Barcelona, Any: 2022, Director: Simone Baloccoca
dc.description.abstract[en] Ischemic Heart Disease (IHD) is one of the leading causes of mortality in Spain; early diagnosis is key. Intravenous ultrasound imaging (IVUS) can help identify symptoms of IHD, at the cost of segmenting a large volume of frames by medical professionals. While promising, automated image segmentation using Convolutional Neural Networks (CNN) suffer from sample scarcity: a large amount of parameters is often used, and medical imaging datasets are typically small and costly to acquire and label. In this report we study and compare state of the art methods used to deal with sample scarcity. In particular we introduce data augmentation methodologies, specialized training losses and transfer learning methods, and compare their performance on IVUS segmentation of the media and lumen or the artery. Additionally we introduce a promising paradigm, few-shot segmentation, and provide an initial implementation using PFENet. This implementation can avoid significant overfitting, even when trained with a single example, outperforming traditional CNNs on the same segmentation problem.ca
dc.format.extent58 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoengca
dc.rightsmemòria: cc-nc-nd (c) Iván Canales Martín, 2022-
dc.rightscodi: GPL (c) Iván Canales Martín, 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/-
dc.rights.urihttp://www.gnu.org/licenses/gpl-3.0.ca.html*
dc.sourceTreballs Finals de Grau (TFG) - Enginyeria Informàtica-
dc.subject.classificationUltrasons en medicinaca
dc.subject.classificationMalalties coronàriesca
dc.subject.classificationProgramarica
dc.subject.classificationTreballs de fi de grauca
dc.subject.classificationXarxes neuronals convolucionalsca
dc.subject.classificationProcessament digital d'imatgesca
dc.subject.classificationDiagnòstic per la imatgeca
dc.subject.otherUltrasonics in medicineen
dc.subject.otherCoronary diseasesen
dc.subject.otherComputer softwareen
dc.subject.otherConvolutional neural networksen
dc.subject.otherDigital image processingen
dc.subject.otherBachelor's thesesen
dc.subject.otherDiagnostic imagingen
dc.titleMedical image segmentation with limited dataca
dc.typeinfo:eu-repo/semantics/bachelorThesisca
dc.rights.accessRightsinfo:eu-repo/semantics/openAccessca
Appears in Collections:Programari - Treballs de l'alumnat
Treballs Finals de Grau (TFG) - Matemàtiques
Treballs Finals de Grau (TFG) - Enginyeria Informàtica

Files in This Item:
File Description SizeFormat 
codi.zipCodi font17.47 MBzipView/Open
tfg_canales_martin_ivan.pdfMemòria3.8 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons