Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/189128
Full metadata record
DC FieldValueLanguage
dc.contributor.authorRuiz-Clavijo, Alejandra-
dc.contributor.authorCaballero-Calero, Olga-
dc.contributor.authorNavas, David-
dc.contributor.authorOrdoñez-Cencerrado, Amanda A.-
dc.contributor.authorBlanco Portals, Javier-
dc.contributor.authorPeiró Martínez, Francisca-
dc.contributor.authorSanz, Ruy-
dc.contributor.authorMartín-González, Marisol-
dc.date.accessioned2022-09-19T14:54:32Z-
dc.date.available2022-09-19T14:54:32Z-
dc.date.issued2022-07-
dc.identifier.issn2199-160X-
dc.identifier.urihttp://hdl.handle.net/2445/189128-
dc.description.abstractUnderstanding the interactions among magnetic nanostructures is one of the key factors to predict and control the advanced functionalities of Three-Dimensional (3D) integrated magnetic nanostructures. In this work, we focus on different interconnected Ni nanowires forming an intricate, but controlled, and ordered magnetic system: Ni 3D Nanowire Networks. These self-ordered systems present striking anisotropic magnetic responses, depending on the interconnections' position between nanowires. To understand their collective magnetic behavior, we studied the magnetization reversal processes within different Ni 3D Nanowire Networks compared to the 1D nanowire array counterparts. We characterized the systems at different angles using first magnetization curves, hysteresis loops, and First Order Reversal Curves techniques, which provided information about the key features that enable macroscopic tuning of the magnetic properties of the 3D nanostructures. In addition, micromagnetic simulations endorsed the experiments, providing an accurate modeling of their magnetic behavior. The results revealed a plethora of magnetic interactions, neither evident nor intuitive, which are the main role players controlling the collective response of the system. The results pave the way for the design and realization of 3D novel metamaterials and devices based on the nucleation and propagation of ferromagnetic domain walls both in 3D self-ordered systems and future nano-lithographied devices.-
dc.format.extent13 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherWiley-VCH-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1002/aelm.202200342-
dc.relation.ispartofAdvanced Electronic Materials, 2022, vol. 2022, num. 2200342, p. 1-13-
dc.relation.urihttps://doi.org/10.1002/aelm.202200342-
dc.rightscc by-nc-nd (c) Ruiz-Clavijo, Alejandra, et al., 2022-
dc.rights.urihttp://creativecommons.org/licenses/by-nc-nd/3.0/es/*
dc.sourceArticles publicats en revistes (Enginyeria Electrònica i Biomèdica)-
dc.subject.classificationVisualització tridimensional-
dc.subject.classificationNíquel-
dc.subject.classificationEstructura electrònica-
dc.subject.otherThree-dimensional display systems-
dc.subject.otherNickel-
dc.subject.otherElectronic structure-
dc.titleUnveiling the Complex Magnetization Reversal Process in 3D Nickel Nanowire Networks-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec724762-
dc.date.updated2022-09-19T14:54:32Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Enginyeria Electrònica i Biomèdica)
Articles publicats en revistes (Institut de Nanociència i Nanotecnologia (IN2UB))

Files in This Item:
File Description SizeFormat 
724762.pdf2.05 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons