Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/189129
Title: Misaligned Rotations of the Envelope, Outflow, and Disks in the Multiple Protostellar System of VLA 1623-2417: FAUST. III
Author: Ohashi, Satoshi
Codella, Claudio
Sakai, Nami
Chandler, Claire.J.
Ceccarelli, Cecilia
Alves, Felipe O.
Fedele, Davide
Hanawa, Tomoyuki
Durán, Aurora
Favre, Cécile
López Sepulcre, Ana
Loinard, Laurent
Mercimek, Seyma
Murillo, Nadia M.
Podio, Linda
Zhang, Yichen
Aikawa, Yuri
Balucani, Nadia
Bianchi, Eleonora
Bouvier, Mathilde
Busquet Rico, Gemma
Caselli, Paola
Caux, Emmanuel
Charnley, Steven
Choudhury, Spandan
Cuello, Nicolás
De Simone, Marta
Dulieu, François
others
Keywords: Formació d'estels
Matèria interstel·lar
Molècules
Star formation
Interstellar matter
Molecules
Issue Date: Mar-2022
Publisher: Institute of Physics (IOP)
Abstract: We report a study of the low-mass Class-0 multiple system VLA 1623AB in the Ophiuchus star-forming region, using H13CO+ (J=3−2), CS (J=5−4), and CCH (N=3−2) lines as part of the ALMA Large Program FAUST. The analysis of the velocity fields revealed the rotation motion in the envelope and the velocity gradients in the outflows (about 2000 au down to 50 au). We further investigated the rotation of the circum-binary VLA 1623A disk as well as the VLA 1623B disk. We found that the minor axis of the circum-binary disk of VLA 1623A is misaligned by about 12 degrees with respect to the large-scale outflow and the rotation axis of the envelope. In contrast, the minor axis of the circum-binary disk is parallel to the large-scale magnetic field according to previous dust polarization observations, suggesting that the misalignment may be caused by the different directions of the envelope rotation and the magnetic field. If the velocity gradient of the outflow is caused by rotation, the outflow has a constant angular momentum and the launching radius is estimated to be 5−16 au, although it cannot be ruled out that the velocity gradient is driven by entrainments of the two high-velocity outflows. Furthermore, we detected for the first time a velocity gradient associated with rotation toward the VLA 16293B disk. The velocity gradient is opposite to the one from the large-scale envelope, outflow, and circum-binary disk. The origin of its opposite gradient is also discussed.
Note: Reproducció del document publicat a: https://doi.org/10.3847/1538-4357/ac4cae
It is part of: Astrophysical Journal, 2022, vol. 927, num. 1
URI: http://hdl.handle.net/2445/189129
Related resource: https://doi.org/10.3847/1538-4357/ac4cae
ISSN: 0004-637X
Appears in Collections:Articles publicats en revistes (Física Quàntica i Astrofísica)

Files in This Item:
File Description SizeFormat 
722594.pdf9.79 MBAdobe PDFView/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.