Please use this identifier to cite or link to this item: http://hdl.handle.net/2445/189722
Full metadata record
DC FieldValueLanguage
dc.contributor.authorKiskinis, Evangelos-
dc.contributor.authorKralj, Joel M.-
dc.contributor.authorZou, Peng-
dc.contributor.authorWeinstein, Eli N.-
dc.contributor.authorZhang, Honkang-
dc.contributor.authorTsioras, Konstantinos-
dc.contributor.authorWiskow, Ole-
dc.contributor.authorOrtega Cano, Juan Alberto-
dc.contributor.authorEggan, Kevin-
dc.contributor.authorCohen, Adam E.-
dc.date.accessioned2022-10-07T17:30:11Z-
dc.date.available2022-10-07T17:30:11Z-
dc.date.issued2018-05-17-
dc.identifier.issn2213-6711-
dc.identifier.urihttp://hdl.handle.net/2445/189722-
dc.description.abstractHuman induced pluripotent stem cell (iPSC)-derived neurons are an attractive substrate for modeling disease, yet the heterogeneity of these cultures presents a challenge for functional characterization by manual patch-clamp electrophysiology. Here, we describe an optimized all-optical electrophysiology, 'Optopatch,' pipeline for high-throughput functional characterization of human iPSC-derived neuronal cultures. We demonstrate the method in a human iPSC-derived motor neuron (iPSC-MN) model of amyotrophic lateral sclerosis (ALS). In a comparison of iPSC-MNs with an ALS-causing mutation (SOD1 A4V) with their genome-corrected controls, the mutants showed elevated spike rates under weak or no stimulus and greater likelihood of entering depolarization block under strong optogenetic stimulus. We compared these results with numerical simulations of simple conductance-based neuronal models and with literature results in this and other iPSC-based models of ALS. Our data and simulations suggest that deficits in slowly activating potassium channels may underlie the changes in electrophysiology in the SOD1 A4V mutation.-
dc.format.extent14 p.-
dc.format.mimetypeapplication/pdf-
dc.language.isoeng-
dc.publisherElsevier-
dc.relation.isformatofReproducció del document publicat a: https://doi.org/10.1016/j.stemcr.2018.04.020-
dc.relation.ispartofStem Cell Reports, 2018, vol. 10, num. 6, p. 1991-2004-
dc.relation.urihttps://doi.org/10.1016/j.stemcr.2018.04.020-
dc.rightscc-by (c) Kiskinis, Evangelos et al., 2018-
dc.rights.urihttps://creativecommons.org/licenses/by/4.0/-
dc.sourceArticles publicats en revistes (Patologia i Terapèutica Experimental)-
dc.subject.classificationElectrofisiologia-
dc.subject.classificationEsclerosi lateral amiotròfica-
dc.subject.classificationNeurones motores-
dc.subject.classificationCèl·lules mare-
dc.subject.otherElectrophysiology-
dc.subject.otherAmyotrophic lateral sclerosis-
dc.subject.otherMotor neurons-
dc.subject.otherStem cells-
dc.titleAll-optical electrophysiology for high-throughput functional characterization of a human iPSC-Derived motor neuron model of ALS-
dc.typeinfo:eu-repo/semantics/article-
dc.typeinfo:eu-repo/semantics/publishedVersion-
dc.identifier.idgrec713979-
dc.date.updated2022-10-07T17:30:12Z-
dc.rights.accessRightsinfo:eu-repo/semantics/openAccess-
Appears in Collections:Articles publicats en revistes (Patologia i Terapèutica Experimental)

Files in This Item:
File Description SizeFormat 
713979.pdf19.53 MBAdobe PDFView/Open


This item is licensed under a Creative Commons License Creative Commons