Please use this identifier to cite or link to this item:
https://hdl.handle.net/2445/189820
Title: | Classifying astronomical sources with machine learning |
Author: | Sabatés de la Huerta, Jordi |
Director/Tutor: | Solanes, José M. (José María) Salamó Llorente, Maria |
Keywords: | Objecte astronòmic Aprenentatge automàtic Treballs de fi de grau Astronomical object Machine learning Bachelor's theses |
Issue Date: | Feb-2022 |
Abstract: | More than 4 million astronomical sources extracted from the Sloan Digital Sky Survey catalog have been used to train a set of machine learning models, selected with a benchmarking program, in order to identify the best basic classifier of astronomical sources for future observations. We have also applied different filters to our dataset that modify its selection function, measuring the accuracy of the selected model to evaluate under which observational constraints this model performs better |
Note: | Treballs Finals de Grau de Física, Facultat de Física, Universitat de Barcelona, Curs: 2022, Tutors: José Maria Solanes Majúa, Maria Salamó Llorente |
URI: | https://hdl.handle.net/2445/189820 |
Appears in Collections: | Treballs Finals de Grau (TFG) - Física |
Files in This Item:
File | Description | Size | Format | |
---|---|---|---|---|
SABATÉS DE LA HUERTA JORDI_5181450_assignsubmission_file_TFG_Sabatés_Jordi_final.pdf | 300.67 kB | Adobe PDF | View/Open |
This item is licensed under a Creative Commons License